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SYSTEMS OF UNITS (Sl .)

there are six principal units from which the units of all other physical quantities can be
derived. Table 1.1 shows the six units, their symbols, and the physical quantities they
represent.

TABLE .| The six basic SI units.

Quantity Basic unit  Symbol
Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature  kelvin K
Luminous intensity candela cd

One great advantage of the Sl unit is that it uses prefixes based on the power of 10 to
relate larger and smaller units to the basic unit. Table 1.2 shows the Sl prefixes and
their symbols.

For example, the following are expressions of the same distance in meters (m):
600,000,000 mm 600,000 m 600 km

TABLE |2 The SI prefixes.

Mulupher  Prefix Symbol

101 exa E
104 peta P
104 tera T
10° giga G
10° meega M
10° kilo k
10¢ hecto lh
10 deka da
10! deci d
102 cenn ¢
10 mulh m
10-° nucro i
102 nano 1
1071 pico p
101 femto f
10-1# atto a
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voltage and current

Voltage and Current are the two basic variables in electric circuits.

The concept of electric charge is the underlying principle for explaining all electrical
phenomena. Also, the most basic quantity in an electric circuit is the electric charge.

X o

Charge is an electrical property of the atomic particles of which
( matter consists, measured in coulombs (C).

The following points should be noted about electric charge:

1. The coulomb is a large unit for charges. In 1 C of charge, there
are 1/(1.602 x 107%%) = 6.24 x 10'® electrons. Thus realistic
or laboratory values of charges are on the order of pC, nC, or

C 1
nC.
. According to experimental observations, the only charges that

occur in nature are integral multiples of the electronic charge
e=—1.602x 10" C.

3. The law of conservation of charge states that charge can neither
be created nor destroyed. only transferred. Thus the algebraic
sum of the electric charges in a system does not change.

(]

When a conducting wire (consisting of several atoms) is connected to a battery (a
source of electromotive force), the charges are compelled to move; positive charges
move in one direction while negative charges move in the opposite direction. This
motion of charges creates electric current. It is conventional to take the current flow as
the movement of positive charges, that is, opposite to the flow of negative charges, as
Fig. 1.3 illustrates.

Battery

Fig.(1.3) Electric current due to flow of electronic charge in a conductor
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Mathematically, the relationship between current i, charge g, and time t is:

. dg
I = —
dt

where current is measured in amperes (A), and
1 ampere = 1 coulomb/second

The charge transferred between time t0 and t is obtained by integrating both sides of
Eq. (1.1). We obtain

t
q:/ 1 dt
fo

A direct current (dc) is a current that remains constant with time.

AAAA—

fig.(1.4)

Fig.(1.4)

B
t An alternating current (ac) is a current that varies sinusoidally with time.

A

fig.(1.5)

&

Fig(L.5)
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Ex 1: The total charge entering a terminal is given by g = 5t sin 4zt mC. Calculate:
the currentatt=0.5s.

Solution:

. dg i i o

I = E = E(br sindmwt) mC/s = (Ssmdxr + 2071 cosdmrt) mA
At =0.5.

i =5sm2mr + 10w cos2wr =0+ 10r = 31.42 mA

Ex2: Determine the total charge entering a terminal betweent=1sandt=2s if the
current passing the terminal isi = (3t > —t) A.
Solution:

2 9]

(1=f_ ieit:/—(Srl—r)dr
=1 1
s BN 1 Lo
= |t — =(8—-2)— l—; =55
Vil -
Voltage

to move the electron in a conductor in a particular direction requires some work or
energy transfer. This work is performed by an external electromotive force (emf),
typically represented by the battery in Fig. 1.3. This emf is also known as voltage or
potential difference.

The voltage vab between two points a and b in an electric circuit is the energy (or
work) needed to move a unit charge from a to b; mathematically

-~

12 |

dw
Uagh =

dq
where w is energy in joules (J) and q is charge in coulombs (C). The voltage vab or
simply v is measured in volts (V)

1 volt =1 joule/coulomb = 1 newton meter/coulomb
Then:
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_— AN
| Voltage (or potential difference) is the energy required to move
1 a unit charge through an element, measured in volts (V).

Figure 1.6 shows the voltage across an element (represented by a rectangular block)
connected to points a and b. The plus (+) and minus (—) signs are used to define
reference direction or voltage polarity. The vab can be interpreted in two ways: (1)
point a is at a potential of vab volts higher than point b, or (2) the potential at point a
with respect to point b is vab.

Fig.(1.6)
Polarity of voltage vab

It follows logically that in general:
vab = —vba

For example, in Fig. 1.7, we have two representations of the same voltage. In Fig.
1.7(a), point a is+9V above point b; in Fig. 1.7(b), point b is —9 V above point a. We
may say that in Fig. 1.7(a), there is a 9-V voltage drop from a to b or equivalently a 9-
V voltage rise from b to a. In other words, a voltage drop from a to b is equivalent to a
voltage rise from b to a.
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() (b)

Fig.(1.7)
Two equivalent representations of the same voltage vab
(a) pointa is 9 V above point b
(b) point b is —9 V above point a.

Keep in mind that electric current is always through an element and that electric
voltage is always across the element or between two points.

circuit elements

Circuit elements are classified into

! |

Passive elements Active elements such as

1-Resistor 1-Voltage source like
batteries

2- Inductor

2-Current source
3- Capacitor
3-Generators

4-Operational amplifier

There are two types of elements found in electric circuits: passive elements and active elements.
An active element is capable of generating energy while a passive element is not.
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voltage and current sources

The most important active elements are voltage or current sources that generally
deliver power to the circuit connected to them. There are two kinds of sources:
a. Independent sources
b. dependent sources

—o- AN
| Anideal independent source is an active element that provides a specified voltage
T or current that is completely independent of other circuit variables.

—0

independent voltage source delivers to the circuit whatever current is necessary to
maintain its terminal voltage batteries and generators may be regarded as approximations
to ideal voltage sources. Figure 1-8 shows the symbols for independent voltage sources.

—0 —O
+
@ v
——0 ——0
(@ (b)
Fig1-8

Symbols for independent voltage sources

an ideal independent current source is an active element that provides a specified
current completely independent of the voltage across the source That is,

the current source delivers to the circuit whatever voltage is necessary to maintain the
designated current. The symbol for an independent current source is displayed in Fig.
1-9, where the arrow indicates the direction of current i
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'@

0

Fig. 1-9
Symbol for independent current source.

Dependent sources are usually designated by diamond-shaped symbols, as shown
in Fig. (1-10)

Fig. (1-10)
Symbols for:
(a) Dependent voltage source,
(b) Dependent current source
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Ideal &actual source

1- The term (ideal voltage source) means that the internal resistance (rs) of the source
(voltage source ) equal zero.

2- The term (ideal current source) means that the internal resistance (rs) of the source
(current source) equal oo fig.(1-11)

Fig (1-11)

Ideal sources

3- The term (actual source) means that there is an internal resistance (rs) of the source
(voltage source or current source).fig.(1-12)

P |
R, E
I _R_SC

"3

Fig (1-12)

Actual sources
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\Voltage and current source conversion

source can be converted to the other type. Fig (1-13).

Re - ¢ >
g R
if - IR, G (
= b

e[

w

Fig (1-13)
Source conversion.

Voltage source to current source and Vice Versa o Sl oS

electrical resistance and conductance

Passive elements

Resistance of the material:

The flow of charge through any material encounters an opposing force due to the
collisions between electrons and between electrons and other atoms in the material,
which converts electrical energy into another form of energy such as heat, is called the
resistance of the material . The unit of measurement of resistance is the ohm, for which
the symbol is ()

The circuit symbol for resistance appears in Fig. (1.1)

R

o AMN o

Fig. (1-14)

Resistance symbol
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The resistance of any material with a uniform cross-sectional area is determined by the
following four factors:

1. Material resistivity
2. Length

3. Cross-sectional area
4, Temperature

Conductors will have low resistance levels, while insulators will have high resistance
characteristics.

At a fixed temperature of 20°C (room temperature), the resistance is related to the

other three factors by:

p:  ohm-centimeters
] [ centimeters
LT A (ohms, £2) A: square centimeters
(1.1)

Where p (Greek letter rho) is a characteristic of the material called the resistivity, | is
the length of the sample, and A is the cross-sectional area of the sample.

CONDUCTANCE (G)

By finding the reciprocal of the resistance of a material, we have a measure of how
well the material will conduct electricity. The quantity is called conductance, has the
symbol G, and is measured in Siemens (S).

G = - (siemens, S)
R
................. (1.2)
In equation form, the conductance is determined by:
A
== (S)

pl

__________________ (1.3)
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Ohm’s law
E "
R = — (ohms, {)) .
E F-_ R g
Or
I= % (amperes. A) =
Fig (1-15)
Or Basic circuit
E =1IR (volts. V)

Ex.3 Determine the current resulting from the application of a 9V battery across a

network with a resistance of 2.2 Q.
Sol.

£V 4004

jf = =
R 221

Ex. 4 Calculate the voltage that must be applied across the soldering iron of Fig.(1-16)
to establish a current of 1.5 A through the iron if its internal resistance is 80 Q.

I=15A
o
E R %80(1
-G

Fig(1-16)

Sol.
E=IR=(15A)8080)=120V
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Voltage and current source conversion

sources can be converted to the other type. Fig (1-17).

R, » ) . 3
if = IR, - (
= '

St

Fig (1-17)
Source conversion.

Voltage source to current source and Vice Versa <l sl

POWER

power and energy calculations are important in circuit analysis.

Power is an indication of how much work (the conversion of energy from one form to
another) can be done in a specified amount of time, that is, a rate of doing work. For
instance, a large motor has more Power than a small motor because it can convert more
electrical energy into mechanical energy in the same period of time. Since converted
energy is measured in joules (J) and time in seconds (s), power is measured in
joules/second (J/s). The electrical unit of measurement for power is the watt (W),

AAAN—
Power is the time rate of expending or absorbing energy, measured in watts (W). |

P = (watts, W, or joules/second, I/s)

Page 13 of 16



Lecture 1 Circuit Variables and Circuit Elements
2024/2025

1 watt (W) = 1 joule/second (J/s)

1 horsepower = 746 watts

woov_Q
P=—=——=}—
[ [ I
o
But I=—
!
so that P=VI (watts)
A
P=VI= V(I\E;)
and P = r (watts)
R
or P =VI= (IR
and P =1TIR (watts)

by inmar N. Ghazi

The magnitude of the power delivered or absorbed by a battery is given by

P =EI (watts)
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With E the battery terminal voltage and | the current through the source

EXAMPLE 5 Find the power delivered to the dc motor of Fig (1-18):

— # ' et \’Iechamcal
i LS horsepower

5 AE developed
Electrical —a_ 5
power 120 ’\
applied o

Fig.(1-18)
Sol.

P=TFI=(120V)(5A) = 600 W = 0.6 kW

EXAMPLE 6 what is the power dissipated by a 5Q resistor if the current is 4 A?

Sol.
P=IR=(4A1G0) =80W

Energy

Energy (W) A quantity whose change in state is determined by the product of the rate
of conversion (P) and the period involved (t). It is measured in joules (J) or watt
seconds (WSs).

W = Pt (wattseconds, Ws, or joules)
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Energy (Wh) = power (W) X time (h)

: power (W) X time (h)
gy (kWh) = -
Energy (kWh) 1000

The kilowatt-hour meter is an instrument for measuring the energy

Example 7 How much energy (in kilowatt hours) is required to light a 60 W bulb
continuously for 1 year (365 days)?
Sol.

Pt (60 W)(24 h/day)(365 days)  525.600 Wh

7

1000 1000 1000
= 525.60 kWh

Example 8 How long can a 205 W television set be on before using more than 4 kwh
of energy?

Sol.

Pt (W)(1000) _ (4 KWh)(1000)

- m: t (hours) = P 205 W

= 19.51h
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2-1 SERIES CIRCUITS

A circuit consists of any number of elements joined at terminal points, providing at least one
closed path through which charge can flow. The circuit of Fig. 2-1 has three elements joined at
three terminal points (a, b, and c) to provide a closed path for the current I.

;
R,

a b
Node or junction ‘/} (7 I ) S>Node or junction
v

a———lt R,

0 ’ Node or junction
| 7 P 7
» O

(a) Senes circul

I _»

=i /\"
- - ——AW s
R, \»
% R Node or junction

(b) R, and R, are not in series

Fig(2-1)
(a) Series circuit R1land R2 and E
(b) Ry and R, and Rz are not in series.

In Fig.( 2-1) the resistors R1 and R2 are in series , the battery E and resistor R1 are in
series, and the resistor R2 and the battery E are in series .Since all the elements are in
series, the network is called a (series circuit.)

@ Note

1- The total resistance of a series circuit is the sum of the resistance levels.
RT=R;+R, (ohm Q)
2- The current is the same through each element and the current drawn from the source
(Total current I1) of Fig. (2-1a) equal:
I=|Rl=IR2=IT (Amp)
I+ can be determined using Ohm’s law.

I=lr=— (Amp)
3- V]_:IR]_ ) V2=|R2 ) VT= V1+V2 (VOIt)
4- The power delivered to each resistor can then be determined using any one of three
equations:
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‘ . = -
‘ P,=WVI,=LiR=— (watts, W)

R,

The power delivered by the source 1s

Pg = ET (watts, W)

@The total power delivered to a resistive circuit is equal to the total power
dissipated by the resistive elements.

Pdel:P1+P2+P3+"'+PIV

EXAMPLE 1

a. Find the total resistance for the series circuit of Fig. (2-2)

b. Calculate the source current Is.

c. Determine the voltages Vi, V,, and Vs.

d. Calculate the power dissipated by Ry, R, and R3.

e. Determine the power delivered by the source, and compare it to the
sum of the power levels of part (d).

(2 Ri=20
-4 |
— ) rd P
E==F=—20V R. § 1O 7

R,
X
e | ZE
Fig (2-2)
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Solutions:
a Rr=R,+R,.+R; =20+ 10+50=8(
E 20V

b I.=—= = 2.5
L= R =30 o
c. i=IRy=025A)Y2) =8V

V, =IR, = (25AX1 Q) =25V

Vi =IR; = (25 A)5 Q) = 12.5)

d. P,=V1,=(5V)25A)=125W
P,=1R,=Q25A)(1 Q) =625W
P,= ViR, = (125V)y /50 = 31.25W

e. Poy=EI=(20V)25A)=50W
Payy =P+ P, + P;
SOW=125W+ 625W + 3125 W
SOW =350W (chccks)_

EXAMPLE 2 : Determine Ry, I, and V, for the circuit of Fig.( 2-3)

Fig.(2-3)

sol. Note the current direction as established by the battery and the polarity of the voltage drops
across R, as determined by the current direction
RT=R1+R2+R3+R4
R=7+4+7+7 =25 Q
7= E 50V _
Ry 250
Vo,=1IR, = (2A)4Q)=8V

2A
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EXAMPLE 3 Given Ry and I, calculate R; and E for the circuit of Fig.2-4 .

Solution:

R;=R,+ R, + R,
12kQ) =R, + 4kQ + 6 k()
R, =12kQ — 10kQ =2 kQ
E=IR,=(6X107A)(12X 10°Q) =72V

——W——W——
R, R
Ry = 12K0)
| Ry § 6 ki)
I1=06 111:\_'
Fig(2-4)

2-2 VOLTAGE SOURCES IN SERIES

—
——— - —
— = — — i+ —1f -
v e6v 2V I8V
(a)

ET=E;+E,+E;=10V+6V+2V =18V

and the polarity shown in the figure

()
ET=E2+E3-E1=9V+3V-4V=8V

and the polarity shown in the figure

Fig (2.5)

(a,b) Reducing series dc voltage sources to a single source.
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2-3 KIRCHHOFF’S VOLTAGE LAW

Kirchhoff’s voltage law (KVL) states that the algebraic sum of the potential rises and
drops around a closed loop (or path) is zero.

A closed loop is any continuous path that leaves a point in one direction and returns to that same
point from another direction without leaving the circuit.

the clockwise (CW) direction will be used throughout the text for all applications of Kirchhoff’s
voltage law. Be aware, however, that the same result will be obtained if the counterclockwise
(CCW) direction is chosen and the law applied correctly. A plus sign is assigned to a potential rise
(- to +), and a minus sign to a potential drop (+ to -). If we follow the current in Fig. (2-6 ) from
point a, we first encounter a potential drop V1 (+ to -) across R1 and then another potential drop
V2 across R2. Continuing through the voltage source, we have a potential rise E (- to + ) before
returning to point a. In symbolic form, where X represents (Summation), the closed loop, and V
the potential drops and rises, we have :

(Kirchhoft’s voltage law

3oV =0 h "
in symbolic form)

Which for the circuit of Fig. (2-6 ) yields (clockwise direction, following the current | and starting
at point d):

the applied voltage of a series circuit equals the sum of the voltage
drops across the series elements.

+E_V|—V2:O
E:V|+V2

Fig (2-6) Applying Kirchhoff’s voltage law to a series dc circuit.

Kirchhoff’s voltage law can also be stated in the following form:
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ZL‘,. E;J'i.'il.":-u - Z|:_‘..

=
driops

EXAMPLE 4 Determine the unknown voltages for the networks of Fig. (2-7)

| 42V 12N + 6V
R R R R,
MWv MW — WA—o—WA—
E, "a= 16V E.===" 9\ E " 32V /(‘§I.l\
(a) (b)
Fig (2-7)
Sol:
a_
+Ei = Vi—=Va—Er=0
and Vi=E,—Vs—FE;=16V—42V -9V
28V
b- +E—V,— V. =0
and Vi=E—V,=32V =12V
=20V
or Using the clockwise direction for the other loop involving R, and R;

will result in
0

L 14V

and
=20V
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EXAMPLE 5 For the circuit of Fig. (2-8)

a. Find Ry.

Find 1.

Find V', and V.

Find the power to the 4-(} and 6-{) resistors.

Find the power delivered by the battery, and compare it to that dissi-
pated by the 4-() and 6-€) resistors combined.

f. Verify Kirchhoft’s voltage law (clockwise direction).

a0 o

.('..‘

R R,
N M MW
| A 40 ! bl
E====20V
E —
Fig (2-8)
Solutions:
a R =R +R=40+60=10Q
E 20V
b. I = = =2 A
R, 100 .

c. Vi=IRi=QAEN)=8YV

Vy=1IRy = (2A)6 ()= 12V
"3 r 2

lI. /),;“ = —L (x\) .94__

R, 4
P = PRy = (2 A)(6 Q) = (4)(6) = 24 W

16 W

c. Pr=EI=(20VH2ZA)=40W
Pp = Py + Py
JOW=16W+24W
40 W = 40 W (checks)

f. 3@qV=4+E—-V,— V=0

E=V,+ V¥,
20V=8V + 12V
20V = 20V  (checks)
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EXAMPLE 6 For the circuit of Fig. (2-9)

a. Determine V; using Kirchhofl's voltage law.
b. Determine /.
¢. Find R, and R;.

Vi=15V
AW\~ —
R
Eumme 54V /\'.ng |
i
+ Wy
- V, =18V
Fig. (2-9)

Solutions:
a. Kirchhoft’s voltage law (clockwise direction):

_E+ V1+V2+V|=0
or E=V+V+ W
and Vo, =FE—V,—V;=5%4V —-—18V—-15V=21V

vy, 21V
b [=—="-—"=3A
R, 70
V, 18V
¢.Ri=—=—""=60
I 3A
V15V
Ry=— = ~=50
I 3A
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2-4 INTERCHANGING SERIES ELEMENTS

The elements of a series circuit can be interchanged without affecting the total resistance,
current, or power to each element. For instance, the network of Fig. (2-10) can be redrawn as
shown in Fig.(2-11)

s ,_.’
r l\, / I‘I‘
f—.‘_——.\ v S 200 ;—.[7"5\ Ssa
& i
Fig. (2-10) Fig. (2-11)
Circuit of

Series dc circuit with

elements to be interchanged with R2and R3 interchanged.

EXAMPLE 7 Determine I and the voltage across the 7€) resistor for the network

of Fig. (2-12)
+ )

4 () | 7 )
——W—1 A%

[ . 12.5V

50 V‘——
T Al ()
. = VWV
Fig (2-12)
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Solution: The network is redrawn in Fig. (2-13)

Fig (2-13)

Rr=(2)40)+7Q=150Q
E 315V
R, 150
Voo = IR = (25A) 7 Q)= 175V

[ = =25A

2-5VOLTAGE DIVIDER RULE (V.D.R.)

the voltage across a resistor in a series circuit is equal to the value of that resistor
times the total impressed voltage across the series elements divided by the total
resistance of the series elements.

V. = — (voltage divider rule)

Fig (2-14)
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Sol.
The circuit is simplified to fig (2-15)

-0 () 60 12

Wy Wy
R R
F— 04N
Fig (2-15)

RE _ _RE _ (200)64V) _ 1280V _ o
R, R, +R, 20Q+60Q 80

Vlz

EXAMPLE 9 Using the voltage divider rule, determine the voltages V1 and V3 for the
series circuit of Fig. (2-16)

R, § 2K

+
E S 45V R, §S k()

R, § §kQ 1,

=

Fig (2-16)
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Solution:
y = RiE (2 kQ)45V) (2k2)E45 V)
"R, 2kQ +5kO + 8KkQ 15 k)
) 3 S\ C 7
_(2 x_lu 12)543\) _ )()-\ — 6V
15 X 107" () 15
yo— RE _ BkO)MESV) _ (8 X 10° Q)(45 V)
TR, 15 kQ 15 % 10° Q)
360V TRY,

15

by lecturer: Inmar N. Ghazi

OO° The rule can be extended to the voltage across two or more series elements.

(volts)

EXAMPLE 10 : Determine the voltage V'(by using voltage divider rule) in

Solution:

_RE _ (2kQ +5kQ)45V)

(7kQ)45 V)

Fig.( 2-16 )across resistors R; and R..

=21V

4

R, 15 kQ)

15 kQ)
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EX.
E=2V = E =2V =
E=3V = E=3V = T 2V+4V=6V
»£T='5V[ » » TET=3V
E=6V = E=6V =+ = 3V+6V=90V
Ey=4V = E,=4V =

Ex. Find the total current(l+):

-
2
I
uJ
-
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R, 20
_"_E3=]V R 4Q
= E,=6V = E=5V § lgTQ
RS 30
Al g =V
RS 10
(a) (b)
6V+1V -2V
Et S5V
I=—=. =——-=0.500 A
R _20+40+30+10= 750

EX. Use the voltage divider rule to determine the voltage across each of the resistors in the circuit shown in Figure
below. Show that the summation of voltage drops is equal to the applied voltage rise in the circuit.

R,

il

|
ey}
)
<
to
=)

AW

ol

Solution

)(18 V) = 5.04V

The total voltage drop is the summation

V=432V + 864V + 504V =180V =E
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Ex.Verity Kirchhoff’s voltage law for the circuit of Figure below:

Vi=2V
AAN-
—>I Vo=3v
i — At
| —A\W
E=15V = §V3:6V
AWV~
Vi=3V
AN~
Vs=1V

Solution: If we follow the direction of the current, we write the loop equation as:

1SN =2 N —=3 N —=6N = 3NV —=1¥ =0
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Voltage Sources and Ground
The symbol for the ground connection appears in Fig.( 1) with its defined

2

Fig(1)

Ground potential

if we take the circuit of fig (2)

Fig(2)

If Fig.(2)is redrawn with a grounded supply, it might appear as shown in Fig. 3(a), (b), or

(c). In any case, it is understood that the negative terminal of the battery and the bottom of
the resistor R, are at ground potential.

\
|

||} .

(b)

Fig (3)(a,b,c)

Three ways to sketch the same series dc circuit.

Page 1 of 10



Lecture 2-b

(circuit transformations)
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Example 1 Design a circuit by using the voltage divider rule of fig (4) such that (Vry = 4Vg, ).

_I'
4 ma ‘
h): V.-’é S| lnA\

E S 20V + ﬁ —— ) :

Fig.(4)
Solution: The total resistance is defined by :

F 20V
Ryjisse =i ~ 5k
z I 4 mA :

20XR1
R1+R2

20XR2
R1+R2

R1=

R2=

Since VRr1=4xVg,

20XR1 _ % 20XR2

R1+R2 = R1+R2
20 20 20
R =4 R -
| 1(R1+Rz) 2(R1+R2):I (R1+R2)
R, = 4R,
lhll.\ I([ = /€| 1 I(: = 'I'R: t R: = 5/(3
and 5R, = 5k}
R, = 1kQ
ilnd R] — "R_v — 4 k(l

.s;,mt., 4 ggaall asil) dlagl olina b asaaill g aana (i3 design  aals
‘ O
O

Page 2 of 10



Lecture 2-b
(circuit transformations)
2024/2025

by lecturer Inmar N.ghazi

Voltage sources may be indicated as shown in Figs. 5(a) and 6(a) rather than as illustrated in
Fig. 5(b) and 6(b)..

Fig (5)

Replacing the special notation for a positive dc voltage source with the standard symbol

M—o 51 AW
/

R

(b)

Fig(6)

Replacing the notation for a negative dc supply with the standard symbol.

Double-Subscript Notation

The double-subscript notation V,, specifies point (a) as the higher potential. If this is not
the case, negative sign must be associated with the magnitude of V.

In other words,
the voltage Vg, is the voltage at point( @) with respect to (w.r.t.) point (b).

Page 3 of 10



Lecture 2-b
(circuit transformations)
2024/2025

/ .c:f-' / 'm;_,

= 0

MV °
R )

Fig(7)

by lecturer Inmar N.ghazi

The fact that voltage is an across variable and exists between two points has resulted in a
double-subscript notation that defines the first subscript as the higher potential. In Fig. 7(a),
the two points that define the voltage across the resistor R are denoted by (a and b). Since
(a) is the first subscript for Vg, point (a) must have a higher potential than point (b)if V, is
to have a positive value. If, point (b) is at a higher potential than point (a) ,Va, will have a

negative value, as indicated in Fig. 7(b).

Single-Subscript Notation

The single-subscript notation (V, ) specifies the voltage at point a with respect to ground

(zero volts).

Lo 10V w10V RY; g 4 QO

Fig.(8)
Defining the use of single-subscript notation

In Fig. 8, V, is the voltage from point (a) to ground. In this case it is obviously 10 V since

it is right across the source voltage E. The voltage V, is the voltage from point (b) to ground.

Because it is directly across the 4Q resistor, V, =4 V.

the following relationship exists:
L-..r.u’l = !-':” - Lf..h (1)
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So from the equation (1):

V=V, —V,=10V -4V
-6V

EXAMPLE 2 Find the voltage V,, for the conditions of Fig.( 9)

o= Tl W ), = +20 W
——AMN—
e

o o)

Fig(9)
Solution: Applying Eq.(1)
Va =V,-V, =16 V-20V
=-4V

. Note: the negative sign means that point (b) is at a higher potential than point (a).

EXAMPLE 3 Find the voltage V, for the configuration of Fig.( 10)
Solution: Applying Eq. (1):

J Vi — +5V 1 4\

A a—-

ol e b
Fig(10)

Vab = Va = Vb

and V,=Vup+V,=5V+4V
=9V
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EXAMPLE 4 Find the voltage Vy, for the configuration of Fig.(11)

OV, = 420V

Fig (11)
Solution: Applying Eq. (1):
Vo =Va-Vp=20V-(-15V) =20V + 15V
= 35V
EXAMPLE 5 Find the voltages V,, V,, V¢, and V. for the network of Fig(12).

Fig (12)

Solution: Starting at ground potential (zero volts), we proceed through a rise of 10 V to
reach point (a) and then pass through( a) drop in potential of 4 V to point (b). The result
is that the meter will read :

Va=10 V

To find V}, we use Kirchhoff’s voltage law :
+E;- 4 -V,=0

10 - 4=V,
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V=6V
Ve = Vp-V;
Ve =Vy- V.
V=V,-20V=6V-20V=-14V
Ve=Va-Ve=10V - (-14 V)
=24V

EXAMPLE 6 Determine Vg, Ve, and V. for the network of Fig.(13)

RI
| > i A
V., R Redraw the network as
shown in Fig. (14)
E,=-19Vo '=
Fig(13) Fig(14)
Sol:

Er=19+35=54V

Ry =20+25 =45
[ = Sz_IV =12A
45 ()
Vip = IR, = (1.2A)25 Q) =30V
V,=—IR, = —(1.2A)20Q0) = =24V

V.=FE =—19V
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EXAMPLE 7 Using the voltage divider rule, determine the voltagesV1 and V2 of
Fig.(15).

E =424V

| =
- R §4 'y
. R 40
I § Redraw the network as o
/\5;: Bz

shown in Fig. (16)

Fig(15) fig (16)

REE  (4Q0)(24V)
Ri+R 40Q0+20Q
, RE — (20)24V)
R, +R, 4Q+20

=16V

8V

EXAMPLE 8 For the network of Fig. (17)

| ar—aa (R | "'-);§;“ [l [ | "vl_§.‘”
: Redraw the network as
3 T +  shownin Fig. (17 b)

il

Fig(17) b

a. Calculate V.
b. Determine V.
c. Calculate V..

4
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Solutions:
a. Voltage divider rule:
CRE  (20)10V)

V., = {2V
® Ry 20+430+50

b. Voltage divider rule:

Ry + RIE _ BQ+5O)I0V) _
R, 10 )

or Vo=V, —Vyp=E—V,,=10V-2V =8V

"/. -- ’.'R: + "[".\ =

¢. V. = ground potential = 0V

‘

EX. For the circuit of Figure below determine the voltages Va

+vl —
% A ?°
Ry =2kQ
- i
f R2=3kQ§V7
= E=20V :
G
+
= Ry =5kQ gm

8V

by lecturer Inmar N.ghazi
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Solution Applying the voltage divider rule, we determine the voltage across
each resistor as follows:

V, = Ll (20V)=4.00V
L 2k +3kQ+5kQ '

3 kQ |
V, = 20V) = 6.00V
2= KO+ 3KQ + 5 KO )
Y — 5 k) (20V) = 10.00 V

2k + 3kQ + Sk
Now we solve for the voltage at each of the points as follows:

V,=4V+6V+10V=420V=E
V,=6V+10V = +160V

V.= 4100V

V,=0V

Ex. For the circuit of Figure below, determine the voltages Vab and Vcb given that:

V.=+5V,V,=+3V,and V. = —8 V.

a b
V,=+5V R
V=143V
V.=—-8V €

V,=+5V—(43V)=+2V
V,=—8V—(+3V)=—11V
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PARALLEL RESISTANCE

Two elements, branches, or networks are in parallel if they have two points in
common,

Different ways of three parallel elements.

1- TOTAL CONDUCTANCE AND RESISTANCE

O _____

T 2n En Ex $

Fig.(1) The total resistance of parallel resistors
Since G = 1/R,
For parallel elements in fig.(1), the total conductance is the sum of the individual
conductance.
Fig.(2) illustrate parallel connection.

)

Fig.(2)
That is, for the parallel network of Fig. (2) we write
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Gr=G,+G,+ Gy + -+ Gy

O
O The total resistance of parallel resistors is always less than the value of the
smallest resistor.

the total resistance of two parallel resistors is the product of the two divided by their
sum.

_ RiR,
" R, +R,

T

For three resistors we can also be expanded the form of above to:

R\R>R;
RT —
R\R>, + Ri\R; + R-R;

For equal resistors in parallel, the equation becomes significantly easier to apply
For N equal resistors in parallel:

2- The voltage across parallel elements is the same.
3- the source current (Is) is equal to the sum of the individual branch currents.

Page 2 of 17



Lecture 3-a (circuit transformations/ parallel networks) by lecturer Inmar N. ghazi

2024/2025

o
For parallel resistors, the total resistance will always decrease as additional elements

are added in parallel.

Examples
EX.(1)

a. Find the total resistance of the network of Fig. (3)

solutions:
O
Ry Rl§13!! R;§l:sz Rgljg
G-
R 12:6) :
Rr=F=—7 =40

b. Calculate the total resistance for the network of Fig.(4)

o
Wy
(]
ool
Wy
o
My
o
~
Wy
ro

fig.(4)
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——t
Ry nglsl ngzu R5§2(2 R,=20

20
4

0.5Q

by lecturer Inmar N. ghazi

Determine the values of R1, R2, and R3 in Fig(5) R2 = 2R1 and R3 = 2R2 and the

total resistance 1s 16 kQ.

O
Fig.(5)
Solution:
U U U
Rr R, R, Ry
r 1.1 . 1
16k} R, 2R, 4R,
sinee R3 == 2R3 — 2(2R1) — 4R1
1 I 1/ 1 1
d — =t —— |+
= 16kQ R, 2(,Rl ) R, )
| fi 1)
—_— = 1.75( —
16 kQ) ( R, )
with R, = 1.75(16 kQ2) = 28 k2
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2024/2025

R2=2R1
R2=2x 28=36 KQ
R3=2x36=72 KQ

Ex.3 For the parallel network of Fig. (6)

o0 oW

Calculate R,

Determine

L.

by lecturer Inmar N. ghazi

Fig.(6)

Calculate /; and />, and demonstrate that /, = I; + L.

Determine the power to each resistive load.

Determine the power delivered by the source, and compare it to the
total power dissipated by the resistive elements.

Solutions:

R\R,

_ 00180 _ 1620 _

6 Q)

a. R

27V

6 ()
E

=45A

27V

R,
E

90
27V

R,

R,

18O

45A=3A+15A

45A =

45A

(checks)

T" R +R 9Q+18Q

JA

1.5A

27
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d. P,=V1, =EI,=Q7V)3A) =81 W

P, =1L = EL = 27V)(1.5A) = 40.5 W

e. P,=FEL = (27V)45A) = 1215 W

=P, +P,=81W+405W = 121.5W

EX.(4)

Given the information provided in Fig. (7)

Ry =40 l[l = 1A l}

Fig.(7)

Determine R;.
Calculate E.
Find ..

Find 7.
Determine P,.

N

Solutions:

1 _ 1 N 1 n |

RT R] RQ R3

1 _ 1 + | N 1
4 Q) 100 200Q R.

o

E==F" ngmn R3§EOQ R,

by lecturer Inmar N. ghazi
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0.258=0.lS+0.OSS+RL

3

1
025S =0.15S + —
R

-

3

0.1S

R3 = # =10 Q)
0.1S
b. E=V,=6LR = “AA)A0Q)=40V

E 40V
o e . R
“ST R 40

E 40V
R, 200

e. P,=DL1R, = Q2A200)=80W

=2A

KIRCHHOFE’S CURRENT LAW

Kirchhoff’s current law (KCL) states that the algebraic sum of the currents
entering and leaving an area, system, or junction is zero.

In other word

the sum of the currents entering an area, system, or junction must equal the sum
of the currents leaving the area, system, or junction. see figure (8)&(9)

2
I / -
\Q‘ ﬁ A
System.
complex
network, ~_10A
Junction \\
: 5
1, 12A=12A

Fig.(8)Introducing Kirchhoff’s current law
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X entering =X ] leaving
6A=2A+4A
6 A =06A (checks)

fig(9) Demonstrating Kirchhoff’s current law.

O
1- A branch represents a single element such as a voltage source or a resistor.

2- A node or a junction the point of connection between two or more branches

EX.(5)
Determine the currents 13 and 15 of Fig. (10) through applications of Kirchhoff’s
current law.
I,=3A
AM ————
L=1A
_‘_____NM—ﬁll ;’\Mr—"“
I,=4A
=W —
Fig.(10)
Sol.
For node a,
I| + l) = 1;
4A+3A=1,
and L=TA
For node b,
l_; = I“ + l_:
TA=1A+ I
and Is;=TA-1A=6A
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EX.(6)

Find the magnitude and direction of the currents 13, 14, 16, and 17 for the network of
Fig. (11). Even though the elements are not in series or parallel, Kirchhoff’s current
law can be applied to determine all the unknown currents.

Fig.(11)

Solution: Considering the overall system, we know that the current
entering must equal that leaving. Therefore,

]7 — Il =10A
Since 10 A are entering node ¢ and 12 A are leaving, /; must be sup-

plying current to the node.
Applying Kirchhoft’s current law at node a,

L +L=1
I0A+;=12A
and L=12A—-10A=2A

At node b, since 12 A are entering and 8 A are leaving, /, must be
leaving. Therefore,

L=1+Is
12A=1+8A
and I,=12A—-8A=4A
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At node ¢, I; 1s leaving at 2 A and /, 1s entering at 4 A, requiring that
I be leaving. Applying Kirchhoft’s current law at node c,

L, =1 + I
4A=2A+I
and Io=4A—-2A=2A
As a check at node d,
I+ 1, =1,

8A+2A=10A
10A = 10 A (checks)

1-For two parallel elements of equal value, the current will divide equally.
2-For parallel elements with different values, the smaller the resistance, the
greater the share of input current.

CURRENT DIVIDER RULE

- T’

T Note difference in subscripts
v
l R,]
I, = -
I R, +R;
¢
v R]]
1 =
2 Ri+R,

Page 10 of 17



Lecture 3-a (circuit transformations/ parallel networks) by lecturer Inmar N. ghazi
2024/2025

EX.(7)
Find the current I1 for the network of Fig.(12)

— 7 = 42 mA

v

R, 11
Rig 6 R:§24 0 A§ 18 ()

Fig.(12)
Sol.
Lol b L 016675+ 0.0417S + 0.0208 S
R, 6Q 240 48Q ' '
=0.2292 S
4 (24 Q)(48 Q)
pJ. I8 — - —
240|480 =" 0 =160
16 (1(42 mA)
= = 30.54 m:
= nten oM
EX.(8)

Determine the magnitude of the currents 11, 12, and 13 for the network of Fig.(13)

Rl
r=ok | R N_A‘/y I,
= e
R,
& 40
Fig.(13)
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Sol.
R,1 (4 Q)(12A)
I, = — = : -=8A
'""Ri+R, 20+40
Applying Kirchhoff’s current law,
I=15+5
and [::I_IIZIZA—SA:":\
or, using the current divider rule again,
b o
R _ 2O)(124) _ 4A

L= :
" Ri+R 20+4Q

The total current entering the parallel branches must equal that leaving.

Therefore.
1_; = 1 =12 A
or =1+, =8A+4A=12A
Ex.(9)

Determine the resistance R1 to effect the division of current in Fig.(14)

=27 mA

70Q
Fig.(14)
Solution: Applying the current divider rule,

RI

[, = —2
"R, +R,
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and (Rl + RE)II
R\, + R 1,
R\I,
R,

Substituting values:

by lecturer Inmar N. ghazi

= Rg[

= Rg[

= Rg[ - Rjjl

_R(U—-1)
I,

R — 7 Q27 mA — 21 mA)

1

An alternative approach 1s

[2=]_]]

70(

(Kirchhoft’s current law)

21 mA

_ 420 _
21

20

.
21)

=27TmA — 2l mA = 6 mA

5 = LR, = (6 mA)7 Q) =42 mV
Viy=LR,=V,=42mV
and R1=Ix1=42mv=29
I, 21 mA
VOLTAGE SOURCES IN PARALLEL
O o)
|I] ...T-: J.T I‘Iﬁ:‘zl _IZ
E\/T==12V E,==="12V — L T 12V
O O
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OPEN AND SHORT CIRCUITS

an open circuit can have a potential difference (voltage) across its terminals, but
the current is always zero amperes.

I=0A

Open circuit

a short circuit can carry a current of a level determined by the external circuit, but
the potential difference (voltage) across its terminals is always zero volts.

_J,I

+
V=0V

Short circuit

Ex.(10) Determine the voltage Vab for the network of Fig.(14)

R, R, I
MWV MV 0 a
) 2kQ 4kQ ¥
E==z=20V V.,
ob
Fig.(14)
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Solution: The open circuit requires that / be zero amperes. The volt-
age drop across both resistors 1s therefore zero volts since I” = IR =
(0)R = 0 V. Applying Kirchhoff’s voltage law around the closed loop.

Ve = E=20V

EX.
Verity that Kirchhoff’s current law applies at the node shown in Figure below:

Answer
3mA+6mA+ 1 mA=2mA +4mA + 4 mA

Ex.

Determine the unknown currents in the network of Figure below

L =24 A Node a
—
L=11A l
Node ¢
I
I Node d

(a) (b)

ghazi
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By examining the network, we see that there is only a single source of cur-
rent /; = 24 A. Using the analogy of water pipes, we conclude that the current
leaving the network is I; = I} = 24 A.

Now, applying Kirchhoff’s current law to node a, we calculate the current
I3 as follows:

L=5L+H
Therefore,
L=L-5L=24A—-11A=13A
Similarly, at node ¢, we have
L+ 1= I
Therefore,
Li=It—5L5=6A—-13A=-7A

Although the current /; is opposite to the assumed reference direction, we do not

change its direction for further calculations. We use the original direction together

with the negative sign; otherwise the calculations would be needlessly complicated.
Applying Kirchhoff’s current law at node b, we get

L=1L+I
which gives
Is=L—-—0L=11A—(—7A)=18A
Finally, applying Kirchhoff’s current law at node d gives
L+I=15hL
resulting in
LH=I+1I=18A+6A=24A

EX. Determine the total resistance of each network of Figure below:

1.2 MQ2

Ry

: 240 () 5000 2
/,” R]’
"~ 20 360
— Ry | 12002 360 () )

(a) (b) ()

900 2 110002
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network (a)
_(1.2MQ)(4.7 MQ)
T 1.2MQ +4.7 MQ
network (b)

JX _ I = 1 " 1 " 1
Rr 120Q 240€Q 3600 150Q
_ |
~0.02194 S
network (¢)

Rt =0 € (short circuit)

=(0.956 MQ

Rt

=0.02194 S

Rt =45.6 Q

by lecturer Inmar N. ghazi
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series-parallel networks :
Series-parallel networks are networks that contain both series and parallel circuit
configurations.

Example 1: calculate the source current (Is) ; (Ig);(lc) for the cct. of fig(1):

a-» AMA b
- 2 kO v13 v
Rr B C:
Raj
o Bllc §12 k() §6kﬂ
s c
Fig.(1)
Sol:
12 kO)(6 kO .
Rzic = R || Re = (12 KO if 6 ui =4k
Rr = Ry + Rp|c

=2k + 4k = 6Kk
The result is an equivalent network, as shown in Fig. 2

1

—_—

r]
E—TMV erg 6 k()
—

Fig.(2)
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and. since the source and R, are in series.

I, =1I.=9mA

We can then use the equivalent network of Fig.(3) to determine Iz and Ic using the
current divider rule:

1
lf.e lf;_n
§12kﬁ §5kﬂ
Fig(3)
6 kO(I,) 6 ..
BT 6kO+ 12kQ 18 S (OmA) =3 m:
2KOE) 12

(WS )

(9 mA) = 6 mA

s

T 12kQ +6kQ 18

or. applying Kirchhoft’s current law.

Ir=1 —Iz;=9mA — 3mA = 6 mA

Example 2: for the cct. of fig (4) calculate:

RAiRB’RC1RT’IT1IA!'B!'C!'R].;'RZ;IR31IR41IR5
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Fig(4)
Sol. : By re-drawing the cct. of fig.(4) we get an equivalent cct.of fig(5):

A Ry, =41
R 40
B: RB:RSL”RS:RZHE:N: 5 =20Q

C: Re=Ry+Rs=R;s=050+150=20
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Blocks B and C are still in parallel. and
R 20 1O

Reie = =5

Rr= R4+ Rp|c
=40+10=50Q

E 10V
j" = — _ — ZA
SR, 5Q

The voltages V. V. and V- from either figure are
Vy=IL,R;,=(2A)40)=8V
Vg=IzgRg=(1A)20)=2V
o=V =12V
Applying Kirchhoff’s voltage law for the loop indicated in Fig. (5), we obtain:

e V=E—-T,—T53=0
E=V;+13=8V+2V
10V =10V (checks)
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Example 3 : for the circuit in the fig(6) find:

RT1 RAv R81 RC ) IS1 IA1 |81 IC1 |11 IZ
SOL.
_OM60O) _ M Q

R, = Rypp = -2 _ =360
AR T 90160 15

603N _ 4104+420=60

RB =R3 + Rq_”s =—1-!l +

60+ 3()
Re=30Q
R, 4
a in-- m T b
R
2 lf,r_"
W—=
600 I
(8
E===168V Rﬁ§3 Q
—_— c
Fig(6)

The network of Fig.( 6) can then be redrawn in reduced form, as shown in Fig. (7).
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I pRa
—
e
3602

Fig(7)
(6B
B Rt Ry =360 % _
Tt Shae == 60+30
~360+20-=560
E 168V
. LA 7
"R, 560
T =do=3A

Applying the current divider rule yields

__Rdy _ GOM(3BA) _ 9A
B Re ¥Ry 3D+60 9
By Kirchhoff’s current law.
Io=L;,—~Iz;=3A—1A=2A

=1 A

By Ohm'’s law.
Vy=LR,;,=BA)B60Q)=108V
Vg=IgRg=Ve=I1I-Rc=2A)3Q)=6V
Returning to the original network (Fig. 6) and applying the current divider rule:

s Rl _ (6QGA) _ 18A
' R+R 6Q0+9Q 15

By Kirchhoff’s current law.

L=I,—=3A—-12A=18A

=1.2A
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EXAMPLE 4: Find the indicated currents and voltages for the network of Fig.(8)

_— 20 § § —
E 24V R, =280 R, 2120 7 o lar g 2| v,

Fig.(8) fig(9)
Block diagram for Fig. 8

R 60 _.
Rlllzz?z 5 =30
s | ~ -} = -
BYEYH _6Q _ 5
30+20 5
BQ)N(12Q) 960 .
Re = Ryje = ~o ) —4380Q)
BB T 0 120 20

Ry = R1|I1|I3 =

The reduced form of Fig.( 8 )will then appear as shown in Fig.(9) :

-+ I',] —
Ry
1210}
I, _
E==="24V R4I|5 §48 Q Vg
——l- >
Ry _
Fig.(9)
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Rr=Rypy +Rys=120+480 =6
E 24V
I = = — =4A
* Ry 6 Q)
with Vi=LRyp; = (4A)(1.2Q) =48V
Vs =LRys=(4A)48Q0)=19.2V
Applying Ohm’s law.
Vs 192V
ILh=——= — =24A
Ry 8 Q)
Va " 48V
L=——= = — =0.8A
- R R, 6
Example 5 :

a. Find the voltages Vi, V3, and Vg, for the network of Fig. (10).
b. Calculate the source current Is.

Rs R,
60 Py 20
-
F‘fnb
R, r R
- AV — S -
E|mm 6V 50 30 18 V o= E,
+ T Vl - 0
I |
Fig.(10)

The cct. is re-drawn as in fig(11):
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L+ n + VI
V1R1§5ﬂ V;ngﬁﬁ
n - STNT
O
E=m=12V oa ob
- P
- TV =
RT30 R 220
Fig.(11)
a.

R\E (5 O)(12V) 60V

vV, = = == = =75V

' R/+R  50+30Q 8

. R3E (6 Q)(12V) 2V ,
R; + R4 60 +20 8

The open-circuit voltage Vab is determined by applying Kirchhoff’s voltage law around
the indicated loop of Fig.( 11) in the clockwise direction starting at terminal a.

+ Ifl — Ifr_q + I’:m =

and Vy=Va—V;=9V—-75V=15V
b. By Ohm’s law,

no_ 15V
I = == =15A
'R, 50

/. 9V ]
L=—"="2"—=15A
Ry 6Q

Applying Kirchhoff’s current law,
L=5L+L=15A+15A=3A
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EXAMPLE 6: For the network of Fig. (12), determine the voltages V1 and V2 and the
current 1.

The cct. is re-drawn as in fig.(13)

R, §6 0 v, E==06Vy , .
R, §5 0 T " - E,== 18V
I, I N
Tfa l TII
=
Fig.(13)

Vo= —E, = —6V

_El + If’rl _EQ =0
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and M=E+E=18V+6V=214V
Applying Kirchhoff’s current law to node a yields

I - Il + Il + irj
V. E E
_n 5 1

R R, Ry +R
24V 6V 6V

— + — + :
60 60 120
4A+1A+05A
I=55A
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Delta (V A) or Pi (L 1) network

ac

Wye (Y A) or Tee (T-1) network

a

(a) Wye (Y) or Tee (T) network

1- Convert V (RA, Rg, Rc) toY (Rl, R,, Rg)

Page 1 of 10

a o-9 ANN >0

Re R,

b o4 o b

(b) Delta (A) or Pi (II) network

RBx RC

" RA+RB+RC
RAx RC

" RA+RB+RC
RAx RB

" RA+RB+RC
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Note :

If R_; — RH — R('.

f s

2- convert Y (R]_, R,, R3) to A (RA, Rg, Rc)

o]
R\R, + R\R; + Ry R;
R.'i B
R,
R\Ry, + R{Ry + R,R;
Ry = R
2
R\R, + Ri\Ry + R,R;
R, =
R;
© Note:
if R1:R2:R3
R, = 3Ry
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(Circuit Transformations) by lecturer Inmar N.ghazi
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Convert the (A) of fig (1) to (Y):

Fig.()
Solution:
o Ry Re B (20 Q)(10 Q) 2000 _3l g
TR+ Ryt R 30Q0+200+10Q 60 °
R.R )10 O O
%, = Re _ 309)(100) _ 300 _s0
R, + Rg+ R¢ 60 () 60
R.R 20 )30 O QO
R, = ARy _ (200)30 ) _ 600 100
Ry + Rp + R¢ 60 ) 60

Page 3 of 10

Fig.(1-a) Y equivalent to A



Lecture 4 (Circuit Transformations) by lecturer Inmar N.ghazi

2024/2025
Example(2) : Convert the Y of Fig. (2) to a A.
he
o
Fig(2)
Solution:
Rk, + R\Rsy + RyR,
4=
R,
_ (60 2)(60 ©2) + (60 Q)(60 £2) + (60 2)(60 )
60 ()
_ 3600 Q) + 3600 £) + 3600 2 10,800 €}
60 60

R,y = 3Ry = 3(60 ()) = 180 ()
RB - RC - 1809
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Example(3): Find the total resistance of the network of Fig. (3), where RA=3 Q
,RB=3 Q, and RC = 6Q

O
———_—
RT
O
Fig(3)
Solution:
Two resistors of the A were equal;
therefore, two resistors of the Y will
bz equal.
3 3 J
- RsR o GM6E) 180 o
R_4+RB+RC .\Q+3Q+($Q 12
Rivia R4Rc _G 0)(6 ) _ 18 Q) — 150 ‘
R,+ Rz + R¢ 12 () 12
Ry=—2aRs __GRCD 2 _ 4150
R, + Rs + R, 120 12
O

Fig(3-a)(Y connection for A of shaded area of fig.(3)
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2Q+1.5Q=3.5Q

4Q+1.5Q=5.5Q

3.5 /1 5.5=2.138Q

R=2.138+0.75=2.88 Q

Example(4): Find the total resistance of the network of Fig.( 4)

Ry = = =21

fig(4-a)

Converting the A configuration of Fig. (14) to a Y configuration.

The network then appears as shown in Fig. (4-b).
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Fig.( 4-b)

Substituting the (Y) configuration for the converted (A )
into the network of Fig. (4)

2*9
T= = 1.6363
2+9

1.6363 ()

d

16363 O 1.6363 ()

b

RT =1.6363 + 1.6363 =3.2727 Q
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EX. Given the circuit of Figure below find the total resistance ,RT, and the total current( ) .

90 O

Ry = 3(10€2) = 30 ()

he resulting circuit is shown in Figure 8—46(a).

Ry

30V = 60 ()
30 )
A
9() (2
(a)
30 8211 30 £ 30 211 60 £2
= 15080 =20 £
SOV ==
30211 90€2 =225 ()
AAA

(h)

TGURE 8-46

Ne see that the sides of the resulting “A™ are in parallel, which allows us to
implify the circuit even further as shown in Figure 8-46(b). The total
estance of the circuit is now easily determined as
Ry = 15 Q)20 . + 22.5 Q)
= 11.09 Q2
(his results in a circuit current of
30 V

= = 2.7
= 1000 70 A
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Ex. Using a A-Y or Y-A conversion, find the current I in the network in Fig. below:

4.7kQ) 1.1 kQ

- 6.8 k()
6.8 k() 6.8 k()

g Exercise 1: find the total current (I1) for the circuit shown in fig.(1):

Rs=10Q

- 60V
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O Exercise (2) Using a A-Y or Y-A conversion, find the current I in the network of Fig. (2)

4.7 k() 1.1kQ

8V === MWy

Fig(2)
@Exercise 3 :Determine the current (I) for the network of Fig.(3):

Wy
7 6 k)
— Wy Wy
4 k() 4 k()
400 V== §4 k()
Fig(3)
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2) NODAL ANALYSIS (FORMAT APPROACH)

1. Choose a reference node and assign a subscripted voltage label to the (N - 1)
remaining nodes of the network.

2. The number of equations required for a complete solution is equal to the
number of subscripted voltages (N-1). Column 1 of each equation is formed by
summing the conductance’s tied to the node of interest and multiplying the result
by that subscripted nodal voltage.

3. We must now consider the mutual terms that, as noted in the preceding
example, are always subtracted from the first column. It is possible to have more
than one mutual term if the nodal voltage of current interest has an element in
common with more than one other nodal voltage. This will be demonstrated in an
example to follow. Each mutual term is the product of the mutual conductance
and the other nodal voltage tied to that onductance.

4. The column to the right of the equality sign is the algebraic sum of the current
sources tied to the node of interest. A current source is assigned a positive sign if
it supplies current to a node and a negative sign if it raws current from the node.
5. Solve the resulting simultaneous equations for the desired voltages.

Ex. Write the nodal equations for the network of Fig (1).

Ry
Wy
30
11<l>2,-; Rl§6ﬂ L 3A R3§4ﬂ
4
Fig.(1)

Sol.

Step 1: The figure is redrawn with assigned subscripted voltages in Fig.(2)
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Lecture 5-b (Methods of Analysis of the dc circuit)

Vi R g}
M
30
I (DZA Rl§5ﬂ 12<>3A R3§4ﬂ
JT_ \Reference
Fig.(2)
Steps 2 to 4:
Drawing current
from node 1
1 1 1 l
V.: — + V: — = |V, = -2A
1 6 () 30 1 3/ 2
\ v J ‘_"_J
Sum of Mutual
conductances conductance
connected
to node 1
Supplying current
to node 2
1 1 1 l .
R — (= = +3A
¥ (49 g e~ (3g)h
\ v J _V_‘
Sum of Mutual
conductances conductance
connected
to node 2
| |
and V=V, =-=2
2 3.
1 7
WV +—V,=3
3 2

Page 2
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EX. Find the voltage across the 3Q2 resistor of Fig. (3) by nodal analysis
Wy Wy Wy
2() 6 () 10 0
r—a A §4ﬁ V3fl§%ﬂ e | W

Fig.(3)

Solution: Converting voltage source to current source and choosing nodes:

4A §2ﬂ §4ﬂ Vmgaﬂ § 0.1A

U U BV
(__2£'l-+4£'!-+6£lJ1:1 ( ) taa
) | LN
(1{}1‘1. 307 6!1)h ( | ) 1= 014
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., 1.,
EII — EPE = 4
P
—=Ti+ %h = —0.1
resulting in
11V — 2V, = +48
=57, + 181, = =3
and
11 48
. . -5 =3 —33 4+ 240 _ 207
=T = = = = 1.101V

‘ 11 -2 198 — 10 188

EX. Using nodal analysis, determine the potential across the 4€2 resistor in Fig.(5):

50 50
MW A}
20 20

=20 3A 40

2
o : 2 ‘ --___: 3
2 2 25
%’ 2 é EPLN 4 Q2
_L_ (0O V)
Fig,(6)
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10 ()
Wy
Vi 20 Vs 2Q Vs
§2ﬂ CT) 3A §4ﬂ
-L-wv}
Fig.(7)
1 . L R ;1
Vi Yt —+—— = [=—= = [—= |5 =
: (_211 20 1011) : _:n.) ? (_1011) ’
| 1 Vv (D (L s
V2 2 1‘1+2n)h ,_zn)rl (,_21‘1)“ A
F 1 | 13 /1 A
Vs: —+—+— (=== =0
’ (__1011 20 451) ’ __211-) : (__1011) !
1.1V, — 0.5V, — 0.1V =0
V, — 0.5V, — 0.5V =3
0.85V5 — 0.5V, — 0.17; = 0
11 —05 0
—05 +1 3
Vy= Vi = _[13'1 _gj 31 = 4.645V
—05 +1 —05
—0.1 —05 +085

Page 5



Lecture 5-b (Methods of Analysis of the dc circuit) by lecturer Inmar N. ghazi
2024/2025

EXx.
Write the nodal equations for the network of Fig. below :
Ry
A AA
40 ()

/_«:SUIII.-\ [.‘CD 200 mA R1§ 3010
Ry §3n 0 S/ /N I

O

I
2[)“ mA

—

= (Reference)

1 o ot
SE Vo — V, = 200 mA+ 50 mA
(209 409) ; (409) :

I 1 I
=l AF ar = 200 mA-50mA
(40(2)V' (309 4OQ)V‘ mATenm

Complete the solution.........
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Exercise Using the format approach, write the nodal equations for the networks in

Fig. below. Using determinants, solve for the nodal voltages

R,
R, 40
MN I
20 L@j
3 S
e CD,] R‘§2 QR3§5 QCD3§2§4Q I'QDMR‘ §2 9“12\0 Q§R35 ) §R4

(a)

=

(b)

Exercise a. Write the nodal equations for the networks in Fig. below
b. Using determinants, solve for the nodal voltages.

c. Determine the magnitude and polarity of the voltage across each resistor

40 12V
|l
R +
3
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Lecture 6-a (Network Theorems/ Supper position and Thévenin ) by lecturer Inmar N .ghazi
2023/2024 Chapter 9 in boylistad

1-SUPERPOSITION THEOREM :

The current through, or voltage across, an element in a linear bilateral network
Is equal to the algebraic sum of the currents or voltages produced independently
by each source.

Number of networks Number of

to be analyzed independent sources

N/B A

JAM&hﬁhb)&ﬂ@,ﬁd\%JﬂS\j@JMAJJ@JJ&G@JHHMd,\hﬂ

1
2

Remove a voltage source when applying this theorem

The difference in potential between the terminals of the voltage source
must be set to zero (short circuit).

Removing a current source requires that its terminals be opened (open
circuit).

Any internal resistance or conductance associated with the displaced
sources is not eliminated but must still be considered.

w
1

SN
1

Figure (A) reviews the various substitutions required when removing an ideal
source, and Figure (B) reviews the substitutions with practical sources that have
an internal resistance.

! ! ! !
| I

<> L ]

I
Fig. (A) Removing the effects of ideal sources.
; "—O O O
R R, o L
I ? /C) gl(_, === 2 R
L — 1 .
Lo Lo o o

Fig.(B) Removing the effects of practical sources
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Lecture 6-a (Network Theorems/ Supper position and Thévenin ) by lecturer Inmar N .ghazi
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Note the total power delivered to a resistive element must be determined
using the total current through or the total voltage across the element and
cannot be determined by a simple sum of the power levels established by each
source.

1) We must determine the value and direction of current in each circuit and
denote the current I" ,1"",1""" and so on.
2) then we determine the resultant of the currents depending on its

directions.

EXAMPLE (1): Determine (I11) for the network of Fig. (2).

Fig.(1)
Solution:

1-Setting E = 0 V for the network of Fig. (1) results in the network of Fig. 1(a), where
a short-circuit equivalent has replaced the 30-V source.

]
SROREES

- Fig. 1(a)

As shown in Fig.1(a), the source current will choose the short circuit path, and I'; = 0
A. If we applied the current divider rule,
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R (0
R+ R O0Q+60Q

r

, 0A

2- Setting (I )to zero amperes will result in the network of Figl(b), with the current

Source replaced by an open circuit. Applying Ohm’s law,

l .
N
E===30V R, §@ 0
= Fig.1(b)
E 30V
I" = = ~5A
'R, 6Q

Since I'; and 1"; have the same defined direction in Fig. 1(a) and (b), the current I is
the sum of the two, and:

IL,=I +1""=0A+5A=5A

EXAMPLE( 2). Using superposition, determine the current through the 4Q
resistor of Fig.(2).

R
24 )
E, === 54V R 12 0) E, =48V
40
R

Fig.(2)
Page 3 of 16
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1-Considering the effects of a 54V source (Fig.2a)

R ! R
A

Wy ' Wy ,.
M0 | == N 48-\ l\\llk‘l'_\ 240 Y

replaced by short
: )

Pl circuit R,
g A A

E,====54V RV§II£I - sV /c.§|3!! ;¢'§.sn

3 ()
Fig.2(a) The effect of E;on the current Is.
Rt= R1+(R2//R3)
Rt=24+(12//4)
Rt= 27

| (total) :% = %Z 2 A

Using the current divider rule,

R (120)Q2A) 24A

'y = = = 1.5A
YRR, 120+40 16
2-Considering the effects of the 48V source (Fig2b):
R,
A
240 s T “l ‘7”‘: 3
I R 2120 Fore=— a8 »/\'gun Rgl_‘! f':=4s\
A P ——-/e‘—-':
. : Wy

ok
LY 80 1 ()

34-V battery replaced

by short circuit

Fig(2b) The effect of E,on the current I5.
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. E, 48V o
TR, 120

The total current through the 4Q resistor (Fig. 2c) is:

I'= 1.5A
-—
Wy
40

e

"= 4A

Fig(2c) The resultant current for 5.

£ F AN VAR 4 A 1.5 A 2.5 A (dircction ot F73)
EXAMPLE (9-5) «us & JisFind the current through the 2€Q resistor of the network of

Fig. (9-19). the presence of three sources will result in three different networks to be
analyzed.
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202H,
I v Y7
I
FIG. 9.20

The effect of E, on the current I.

I I 6V E,
18 &7

FIG. 9.21
The effect of E; on the curvent 1.

| 10 R,

RI
I

) I

=

20Q)

FIG. 9.22
The effect of I on the current I,

(Network Theorems/ Supper position and Thévenin )

by lecturer Inmar N .ghazi

Chapter 9 in boylistad

Solution: Considering the effect of the 12-1 source (Fig. 9.20):

E, 12V

v

h=3r"

Considering the effect of the 6-1" source (Fig. 9.21):

E, 6V

"

20+40 60

— 6 \! —

'TRAR 20440 60

Considering the effect of the 3-A source (Fig. 9.22):

Applying the current divider rule,

RI _ (4M)(GA) _ 12A

n
I"

"R tR 20+40

2A

1A

=2A

The total current through the 2-£) resistor appears in Fig. 9.23, and

Same daestion Opposite direction
as), mFig. 919 / to ], inFig 9.19

S O 00
L=I+I" 21,

=JA+2A-2A=1A

FIG. 9.23

The resultant current I

>

=2 A R 220

=1
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2-THEVENIN’S THEOREM

Any two-terminal, linear bilateral dc network can be replaced by an equivalent
circuit consisting of a voltage source and a series resistor, as shown in Fig. below.

M\ o u

®hH

The following sequence of steps will lead to the proper value of Ry, and E+y.

1. Remove that portion of the network across which the Thévenin equivalent circuit is
to be found. In Fig. 2(a), this requires that the load resistor R, be temporarily removed
from the network.

2. Mark the terminals of the remaining two-terminal network. (The importance of this
step will become obvious as we progress through some complex networks.)

Rn:

3. Calculate Ry, by first setting all sources to zero (voltage sources are replaced by
short circuits, and current sources by open circuits) and then finding the resultant
resistance between the two marked terminals. (If the internal resistance of the voltage
and/or current sources is included in the original network, it must remain when the
sources are set to zero.)

Eth:

4. Calculate Ey by first returning all sources to their original position and finding the
open-circuit voltage between the marked terminals. (This step is invariably the one
that will lead to the most confusion and errors. In all cases, keep in mind that it is the
open-circuit potential between the two terminals marked in step 2.)

Conclusion:
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5. Draw the Thévenin equivalent circuit with the portion of the circuit previously
removed replaced between the terminals of the equivalent circuit. This step is
indicated by the placement of the resistor R_ between the terminals of the Thévenin
equivalent circuit as shown in Fig. 2(b).

Wy
Ry

o
l/
b ——
B — R, R; fz» Cr o

Fig.(a and b)

Substituting the Thévenin equivalent circuit for a complex network.

Ex.1: Find the Thévenin equivalent circuit for the network in the shaded area of the
network of Fig.(1). Then find the current through R for values of 2 Q, 10 Q, and 100 Q.

Fig(1)
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Chapter 9 in boylistad

1- Find Ry, fig.(1-a)

RT.I"J - RI H R2

2- Find Eq, fig(1-b)

R,
m e
30
_|_
E\T= 9V ng 6 ()
® )
R, a
Wy .
30
(@]
] RZ60 =&y,
1
(a)
Fig(1-a) find R,
30)6 Q)
GOOED) _, o
30+ 61
RI
Wy 2a
30
+
.E| Y H] §6 0 fr“..'}".'
.r b

Fig(1-b)
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RE, (6Q)OV) 54V

E.. = = = 6V
TR, 4R, 60 +30Q 9

3- Substituting the Thévenin equivalent circuit for the network external to R, fig(1-c)

Jsad) (e (AN lladl)

/ ETh
YT Ry + Ry
R, =2 l,l=m%= 1.5A
= ; _ 6V =
R, = 108 II'—2(2+10()_05A
= . (e
R, = 100€: 1, S0+ 1000 0.059 A

EXAMPLE 9.10 <usll e (Two sources) Find the Thévenin circuit for the network
within the shaded area of Fig. (9.49).

FIG. 9.49
Example 9.10.
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Solution: The network 1s redrawn and steps [ and 2 are applied as
shown n Fig. 9.50.

R,
R, ‘v‘v‘v l
AAA R, A 1.4kl a
R | VSVJ) l R, SO8K0" L é
2 X . a .
RSosk) Sk = ) . k360
R, 6k Ry g V ES= 10V b
i g e !
[— -
2l F
FIG. 9.50

Identifving the terminals of particular interest
Jor the network of Fig. 9.49.

Step 3: See Fig. 9.51.
Ry =R+ R || R || Ry

FIG. 9.51
Determining Ry, for the network of Fig. 9.50.

Aij‘_,ru = 1.4k + 0.8k || 4k || 6 kO
Wy = 14k0 + 08KkQ || 24Kk0
R L4k l . =14k + 0.6k}
R Soskn S - =2kQ
R6KY ¥, EYy,
KoV + v Step 4: Applying superposition, we will consider the effects of the
T voltage source £, first. Note Fig. 9.52. The open circuit requires that
- Vi=1LRy= (0)R = 0V, and
FIG. 9.52 En=T;
Rr=R, || R; =4k || 6k} =24k

Determining the contribution to Exy, from the

source E, for the network of Fig. 9.50. ) o
Applving the voltage divider rule,

, tE (24kQ)6V) 144V
I; = =1 + R = = = 45V
+ V- Ry D 24k +08K0 32
L=0 R
—Wy Em=V:=45V
L4k 1
B2 05 wﬂ: | B i For the source E,, the network of Fig. 9.53 will result. Agamn, I, =
S R6K) 7 £y LRy=(0R;=0V.and
E="10V i N
. -I- I ) Ey=T;
i 5 R';=R, || R; = 0.8k || 6 k2 = 0.706 k)
z oy o RiE _ OT06KOXIOV) 706V
o R TReA R 0706k +4KQ 4706
Determining the contribution to Eg, from the
E"n, e ,; =15V

source E, for the nerwork of Fig. 9.50.
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Since E’;, and E”};, have opposite polarities,

rr

ETF? - 'IT?J LT
=45V —-15V
=3V (polarity of £77)

Step 5: See Fig. 9.54.

Ry,

2 k()

Ep =3V §RL

FIG. 9.54
Substituting the Thévenin equivalent circuit
for the network external to the resistor Ry of
Fig. 9.49.

EX. Using superposition, find the current through R1 for the network in Fig. below:

Ry
33k0
[|
+
I R, §2.2 = R3§4.7 kO
-Tsv
SmA
I
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Sol.

3.3 kQ

(‘D 5 mA 2.2kQ gw kQ

-

;= 33kQ(5mA)  16.5mA

L 22KO+33KO 5.

N

=3 mA

e 8V _ 8V
' 33k0Q+22kQ 55k0

= 1.45 mA

I”and I”” in the same direction so:

L=7,+I"7=3mA+ 145 mA =445 mA

by lecturer Inmar N .ghazi
Chapter 9 in boylistad
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_Ex. Find the Thévenin equivalent circuit for the network external to the resistor R for the network in

Fig. below:

l 2.2kQ

Er: Superposition:

RTv‘z

s

e

™

I
O
Er,
+
(o]
E'm=IRr

=8 mMAX1.58 KQ=12.64V

E:

2.2kQ
§5.6 kQ 8 mA

2.2kQ

16V

RTix =

56kQ || 2.2kQ = 1.58 kQ

_ 5.6X2.2
5.6+2.2

= 1.58k()
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, _ 5.6kQU6V)
E'n=
5.6kQ+2.2kQ
=11.49V

Eth=12.64 - 11.49
Eth=1.15V

Exercise: Use superposition to solve for the voltage Va and the current | in the circuit
of Figure below:

E, 100 a 60Q E

MAN—+— WV
—~5V -— +2V
I+
v 30 O
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Exercise: Find the power delivered to R when R is 2 Q and 100 Q.

hn
-
-

R,

Q

MN—
Ry

R3$ 50 R

Exercise Find the Thévenin equivalent circuit for the network external to the resistor
R for the network in Fig. below

I -+
|
whn

m

[
()
o
<

||I—~»—||

O—

L -
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3-NORTON’S THEOREM Any two-terminal linear bilateral dc network can be
replaced by an equivalent circuit consisting of a current source and a parallel resistor, as
shown in Fig. (a)

&

'}
Iy § Ry

e b

Fig.(a)

1. Remove that portion of the network across which the Norton
equivalent circuit is found.
2. Mark the terminals of the remaining two-terminal network.

R Ne

3. Calculate Ry by first setting all sources to zero (voltage sources are
replaced with short circuits, and current sources with open
circuits) and then finding the resultant resistance between the two
marked terminals. (If the internal resistance of the voltage and/or
current sources is included in the original network, it must remain
when the sources are sef to zero.) Since Ry = Ry, the procedure
and value obtained using the approach described for Thévenin’s
theorem will determine the proper value of R .

! Ne

4. Calculate Iy by first returning all sources to their original position
and then finding the short-circuit current between the marked
terminals. It is the same current that would be measured by an
ammeter placed between the marked terminals.
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Conclusion:

5. Draw the Norton equivalent circuit with the portion of the circuit
previously removed replaced between the terminals of the
equivalent circuit.

Note  The Norton and Thévenin equivalent circuits can also be found from each other by using the
source transformation Fig. (b)

i
> £,
! o § Ry = Ry,

= « . Ry,

Fig.(b) Converting between Thévenin and Norton equivalent circuits.

EXAMPLE (1) Find the Norton equivalent circuit for the network in the shaded area of

Fig. (1)

R, a
MWy °

30

_|_
E™/—=9V R, < 61} § R,

*
e 1"]

fig(1)
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Solution:

Steps 1 and 2 are shown in Fig. (1-a)

JHll
30
_|_
I —— VAV R, 6 ()
® /)

Fig.(1-a)

Step 3 find (Ry) as shown in Fig. (1-b)

R,

M & i

30)
, f———
R, < 61() R,

J_ e b

Fig.(1-b) Determining Ry for the network

BO6Q) 180

= 2(
30 +610 9 @
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Step 4 find (Iy) as shown in Fig. (1-c), clearly indicating that the short-circuit connection
between terminals (a) and( b) is in parallel with R, and eliminates its effect. Iy is therefore
the same as through R4, and the full battery voltage appears across R; .

{ R, 1, [, Short-,
| .
VVH &d [
30 lfz Y
v .
E==="9\ I2R2§{a£l I\
-+
. b

Short circuited -*
Fig(1-c)

Vy=5LR, =(0)6Q =0V
Theretore,

E 9V _

[ = = =
YR, O30

JA

Step 5: See Fig. (1-d). Substituting the Norton equivalent circuit for the network external
to the resistor RL of fig.(1)

®

T Iy=3A §R;\- =20 §R;_

' W

Fig.1-d

Substituting the Norton equivalent circuit for the network external to the resistor RL of fig.(1)
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A simple conversion indicates that the Thévenin circuits are, in fact, the same as Norton
circuit (Fig. 1-e).

| Ry = Ry = 20
° M °

=Ly = LRy = BA)2Q) =6V

o)
A
Uw

o

|
o
il

Fig.(1-e)

Converting the Norton equivalent circuit of Fig. (1) To a Thévenin equivalent circuit.

EXAMPLE 2 Find the Norton equivalent external to the 9Q resistor in Fig. (2)

R,

Sjﬂ a
=
R:§4-ﬁ 10 A R;_g‘?ll

Fig.(2)

Solution:
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Steps 1 and 2: See Fig. (2-a).

R,
50
/ —
S,
< 40
R—§ 10 A
o)
Fig(2-a)
Step 3: find (Ry ) See Fig. (2-b),
RI
Wy
51 B

e b

Fig(2-b)
Rv=R +R=50+40=9()

Step 4: find Iy As shown in Fig. (2-c) the Norton current is the same as the current
through the 4Q resistor. Applying the current divider rule,
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: R|§ )
I, Rjguz I 50
oA 1 - -, 10 A

Fig(2-c) Determining Iy for the network of Fig. (2)

R, (5Q)N10A)  S0A
Iy = = = — 5.556 A
Ri+R 50+4Q 9
Step 5: See Fig. (2-d)
Iy CL>5.556A Rﬂ,§9.g Rf_§a 9
® )

Fig.(2-d)

Substituting the Norton equivalent circuit for the network external to the resistor R,
of Fig. (2).
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EXAMPLE (3) (Two sources) Find the Norton equivalent circuit for the portion of the
network to the left of a-b in Fig. (3)

o
R =40 R_;§0 0
IQ)SA R3§6Q R4§I0!l
&
——— h

Fig.(3)
Solution:

Steps 1 and 2: See Fig. (3-a)

R, 40
o

® )

Fig.(3-a)
Step 3 is shown in Fig. (3-b), and
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R, §e QO

sif—
R,

Y

Step 4: (Using superposition)

For the 7V battery (3-c),

Fig.(3-b)

(A O)60) 240

h

=240

40 + 61

Short (:il'{:ui‘[ed

10

—
I\

R,

. I'
2 § § !l |

Fig.(3-c) Determining the contribution to Iy from the voltage source EL1.

E, 7V

Iy

R, 4Q

175 A
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For the 8 A source (Fig. 3-d) we find that both R1 and R2 have been “short
circuited” by the direct connection between a and b, and

Short circuited

s . cl
“ 5
- “
4 “
rd N
R, =40 %

/ 8A R, §:ﬁa () I

[

I, 1",
—_— —_—

J_— b

Fig.(3-d) Determining contribution to 1y from the current source I.

The result 1s

Iv=1"y—1Iyv=8A—175A =6.25A

Step 5: See Fig.(3-e).
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P
R;g 9 ()
Iy C') 6.25 A Ry = 2.4 Q) R, 10 £)
.
e b
Fig.(3-e)

Substituting the Norton equivalent circuit for the network to the left of terminals (a-b)
in Fig. (3).
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4-MAXIMUM POWER TRANSFER THEOREM

The maximum power transfer theorem states the following:

A load will receive maximum power from a linear bilateral dc network when its total
resistive value is exactly equal to the Thévenin resistance of the network as “seen” by
the load .

Fig.(a)

Defining the conditions for maximum power to a load using the Thévenin quivalent
circuit.

For the network of Fig. (a), maximum power will be delivered to the load when:

Rf, — R?}’?

For the network of Fig. (a):

 Ep 2
and P, = FR;_ — ( L ) R;

so that P; = R+ R)
Th 3
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For the Norton equivalent circuit of Fig. (b), maximum power will be delivered to the
load when:

=
Iy (‘) Ry R,

Fig(b)

Defining the conditions for maximum power to a load using the Norton equivalent
circuit.

The dc operating efficiency of a system is defined by the ratio of the power delivered to
the load to the power supplied by the source; that is,

Py
n% = — X 100%
P

&

When R; = Ry,
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The power delivered to R under maximum power conditions (R = Ryy,) is

[: E?]ﬁ _ E'.-’T'ﬂ
Ry, + Ry 2Ry,
E.—’h EQ}’}*JR?}’?
P, =I°R, = m =
o (sz) " ARy,

and = ' (watts, W)

For the Norton circuit of Fig. (b),

_ LRy

""I‘HII."; 4 (W)

Example 4 : A dc generator, battery, and laboratory supply are connected to a resistive
load RL in Fig. 4(a), (b), and (c), respectively.

(a) dc generator (b) Battery (c) Laboratory supply
Fig.(4)
a. For cach, determine the value of K; tor maximum power transfer to

R;.
b. Determine R; for 75% efficiency.
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Solutions:
a. For the dc generator,
R; = Ry, = Ry = 2.5 Q2
For the battery,
R; = Ry = Ry = 0.5 L2
For the laboratory supply,
R = Ry = Ry = 40 Q2
b. For the dc generator,

T p

&

(y in decimal form)

R,
- Ry + Ry
N(Ry, + R) =R,
Ry + MR = R;
R (1 —n) = nRy,

n

Ry
and R, = AT
I — 7
R, = 0.75(2.5 £Fl} _ 750
1 —0.75
For the battery,
R, — 0.75(0.5 !_l) _ 150
1 —0.75
For the laboratory supply.
0.75(40 )
R, = ( ) _ 120

1 —0.75

Chapter 9 in boylistad
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Note:

For loads connected directly to a dc voltage supply, maximum power
will be delivered to the load when the load resistance is equal to the
internal resistance of the source; that is, when

Rf. - Rim Or RL: RS

EXAMPLE 5 : Analysis of a transistor network resulted in the reduced configuration of
Fig(5). Determine the R, necessary to transfer maximum power to RL, and calculate the
power of RL under these conditions.

(Dom rFoe 2

Fig.(5)
Solution:
R, = R, = 40 kQ
IAR 10 mA)*(40 kQ
""mnx - \4 : - ( = ):_l( ) - 1 W
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EXAMPLE 6 For the network of Fig. (6), determine the value of R for maximum power
to R, and calculate the power delivered under these conditions.

R, R,
MWV MV 0
6 () 8 ()

O
Fig(6)
R, R
Wy -
6 () 80
o)
R, §3 () -—
- Ry,
0
.
Fig(6-a)

Determining R+, for the network external to the resistor R of Fig(6).

Solution:

(6 (2)(3())
6 +30

R:R?}gzlﬂﬂ

=80 +2()

R?}r?:R]+R| ||R2:8£1+
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See Fig. (6-b) ,using voltage divider rule to find Vg,:

Where Et,= Vg

Fig.(6-b)

Determining E, for the network external to the resistor R of Fig. (6)

R,E 30)(12V) 36V
Ep = —t2b _OWA2Y) 30V _ .y
R+R  30+6Q0 9

Then:

b Em o GV W
fmax 4R, A410Q)
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EXAMPLE 7 Find the value of R, in Fig(7) for maximum power to R, and determine
the maximum power.

R, L
AWy —
30 + |
o 68 V
! Cl) 6 A R1§IO () § R,
Ry
Wy 0
20
Fig(7)
Solution:
See Fig. (7-a).
R,
M 8 ]
l 30
R, 10 () D —
= Ry,
T 2 ()
AWy .
Rs
Fig(7-a)
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and R =Ry =150

Note Fig. (7-b), where

V=0V +
[ =0 E|
-—
W———
=30
R =8 gy

Ry =
+ i:".._;-I

Fig(7-b) Determining Ey, for the network external to the resistor R, of Fig. (7)

Vi=Vy;=0V
and Vy =6LR, = IR, = (6 A)(100)) =60V
Applving Kirchhoft’s voltage law,
2aV=—V,—E +E;=0
and Epy =V, +E =60V +68V =128V

E3 (128 V)’
p - =" _273.07W
max 4]{'??? 4( 15 fl)

Thus.
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Ex. Find the Norton equivalent circuit for the network external to the resistor R for
each network in Fig. below:

e - &

8 mA —aa A"
s
R_:\r:
1 .
R_N,. 56 kO 2.2kQ
Ry=56KkQ || 2.2k =1.58 kQ
Iy

‘FIT ,25‘6 kQ G) 8 mA 2.2 kQ2
N g
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16V
I'v=—" =727mA
22KO

IvT =8 mA — 7.27 mA = 0.73 mA

EX.

a- For network in Fig. below, find the value of R for maximum power to R.
b- Determine the maximum power to R .

&éﬁn
50

20V AM—,

+
Eoe—
T- &%ﬁu ' ?R
\lj
—

Sol.
%59
L ]
AM—o
)\ 5Q
5Q

O

RTP;':

“Rp=5Q+5Q(5Q=75Q

So: R=Ry\,=7.5
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ET};Z
%5 Q
+
_ O
20V == é 50 + o
5Q ETJ‘E = = — 10 ‘f?
== 5 )
_ Ep
Fres 4R,
2 2
E 10
Pl (max)=——2— =————=3.33W
4XR:p 4X7.5

Exercise : Find the Norton equivalent circuit external to the indicated terminals of Figure

below:
a
|
ZOQ§ §3SQ
100 V== ¢— §RL=SOQ
§6OQ
@

h
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Exercise: a- For the network in Fig. below, determine the value of R for maximum power

to

R.

b. Determine the maximum power to R.

I

5A R3§4£1

¥
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MAGNETIC FIELDS In the region surrounding a permanent magnet
there exists a magnetic field, which can be represented by magnetic flux
lines . The strength of a magnetic field in a particular region is directly
related to the density of flux lines in that region .If a nonmagnetic
material, such as glass or copper, is placed in the flux paths surrounding
a permanent magnet, there will be an almost unnoticeable change in the
flux distribution (Fig. 1). However, if a magnetic material, such as soft
iron, is placed in the flux path, the flux lines will pass through the soft
iron rather than the surrounding air because flux lines pass with greater
ease through magnetic materials than through air. This principle is put to
use in the shielding of sensitive electrical elements and instruments that
can be affected by stray magnetic fields (Fig. 2).

Flux lines

L

trtrrT

Yy ¥r v
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Fig.(2)

The direction of the magnetic flux lines can be found simply by placing

the thumb of the right hand in the direction of conventional current flow
and noting the direction of the fingers. (This method is commonly called
the right-hand rule.) If the conductor is wound in a single-turn coil (Fig.
3), the resulting flux will flow in a common direction through the center
of the coil. A coil of more than one turn would produce a magnetic field
that would exist in a continuous path through and around the coil (Fig4).

\ /K\\\%{\\\i/\\\ /< \ /V
T;'—I +r—|‘11’h T 1] s

S A A
LSS

The flux distribution of the coil is quite similar to that of the permanent
magnet. The flux lines leaving the coil from the left and entering to the
right simulate a north and a south pole, respectively. The principal
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difference between the two flux distributions is that the flux lines are
more concentrated for the permanent magnet than for the coil. Also,
since the strength of a magnetic field is determined by the density of the
flux lines, the coil has a weaker field strength. The field strength of the
coil can be effectively increased by placing certain materials, such as
iron, steel, or cobalt, within the coil to increase the flux density within
the coil. By increasing the field strength with the addition of the core, we
have devised an electromagnet (Fig. 5)

w_/ k e < »
I ‘\\\ £ ._\ Steel \>‘7?
Fig.(5)

The direction of flux lines can be determined for the electromagnet (or
in any core with a wrapping of turns) by placing the fingers of the right
hand in the direction of current flow around the core. The thumb will
then point in the direction of the north pole of the induced magnetic flux,
as demonstrated in Fig. 6(a). A cross section of the same electromagnet
Is included as Fig. 6(b) to introduce the convention for directions
perpendicular to the page. The cross and dot refer to the tail and head of
the arrow
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Flux density

(a)

(\,c ], N \ \/ \{
._L_.._.__. ..'_.._._. —

4559

PO «—F-N

— e — — ————

i‘:o)o1:/\o)o \o/uo)ol_;
(b)
Fig.(6)

In the SI system of units, magnetic flux is measured in webers and has
the symbol ®. The number of flux lines per unit area is called the flux
density B.

B =

L
4

B = teslas (T)
® = webers (Wb)
A = square meters {1112)
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PERMEABILITY

The permeability (u) of a material, therefore, is a measure of the ease
with which magnetic flux lines can be established in the material. It is
similar in many respects to conductivity in electric circuits. The
permeability of free

space po (vacuum) is :

7 Rﬁrh
A'm

po = 4w X 10

the permeability of all nonmagnetic materials, such as copper, aluminum,
wood, glass, and air, is the same as that for free space. Materials that have
permeabilities slightly less than that of free space are said to be
diamagnetic, and those with permeabilities slightly greater than that of free
space are said to be paramagnetic. Magnetic materials, such as iron,
nickel, steel, cobalt, and alloys of these metals, have permeabilities
hundreds and even thousands of times that of free space. Materials with
these very high permeabilities are referred to as ferromagnetic.

The ratio of the permeability of a material to that of free space is called

its relative permeability; that is,

il

Hr—E

RELUCTANCE ( dswublizall dzilaall)

The reluctance, is inversely proportional to the permeability, therefore,
materials with high permeability, such as the ferromagnetic, have very
small reluctances and will result in an increased measure of flux through
the core
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OHM’S LAW FOR MAGNETIC CIRCUITS

by lecturer Inmar N.ghazi
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For magnetic circuits, the effect desired is the flux @ The cause is the

magnetomotive force (mmf) F, which is the external force (or
“pressure”) required to set up the magnetic flux lines within the

magnetic material. The opposition to the setting up of the flux ® is the
reluctance R. .

Substituting, we have :

%

* %

The MAGNETO MOTIVE FORCE § is proportional to the product of

the number of turns around the core (in which the flux is to be

established) and the current through the turns of wire (Fig.7). In equation

form,

G —

NI

(ampere-turns, At)
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MAGNETIZING FORCE

The magneto motive force per unit length is called the magnetizing
force (H). In equation form

H= (At/m)

~ |

Substituting for the magnetomotive force will result in

H=— (At/m)

the magnetizing force is independent of the type of core material—it is
determined solely by the number of turns, the current and the length of
the core. As the magnetizing force increases, the permeability rises to a
maximum and then drops to a minimum.

The flux density and the magnetizing force fig.(8)and (8-a)are related by
the following equation:

B = uH
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Defining the normal magnetization curve,

a(T)
20
[ B
1.6 Sheet steel
I L

r
H
:»H_

4 | | ! qu 1 2 XL | 1 i 1 Al
W00 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 - hAtm)

Fig.(8) illustrate the magnetizing force region or (B-H) curve.
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1.4
1.3 — -
N S
- Sheet steel
1.2 —=
—
f‘.
1.1 —
¥
f
1.0 ye
Fa
A .
Fi =T
LIRS P
¥,
/
L] F ,f
jr Cast steel
0.7
]
oy
0.6 e
Fi
A
|
0.3 %
|
|
0.4 f
i
Fi
0.3 —
| =T
f / B= Cn
o [ Cast iron
i rl f _._'_,:-
r -
Fi ™
I A
0.1 Al
Fa
F
|
ik 1 (b 2N 1L} ETNIR] SOHD SLhIN] TN H AL )

Fig.(8-a) Expanded view of Fig. (8) for the low magnetizing force region
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HYSTERESIS

A typical B-H curve for a ferromagnetic material such as steel can be
derived using the setup in Fig. (9) .The core is initially un-magnetized,
and the current I = 0. If the current I is increased to some value above
zero, the magnetizing force H increases to a value determined by

NI
=
The flux @ and the flux density B (B=®/A) also increase with the current
| (or H). If the material has no residual magnetism, and the magnetizing
force H is increased from zero to some value Ha , the B-H curve follows
the path shown in Fig. (10) between o and a. If the magnetizing force H
Is increased until saturation (Hs) occurs, the curve continues as shown in
the figure to point b. When saturation occurs, the flux density has, for all
practical purposes, reached its maximum value. Any further increase in
current through the coil increasing H = NI/l results in a very small
increase in flux density B. If the magnetizing force is reduced to zero by
letting I decrease to zero, the curve follows the path of the curve
between b and c. The flux density BR , which remains when the
magnetizing force is zero, is called

the residual flux density. It is this residual flux density that makes it
possible

to create permanent magnets. If the coil is now removed from the core in
Fig. (9), the core will still have the magnetic properties determined by
the residual flux density, a measure of its “retentivity.” If the current I is
reversed, developing a magnetizing force, —H, the flux density B
decreases with an increase in I. Eventually, the flux density will be zero
when -Hd (the portion of curve from c to d) is reached. The magnetizing
force -Hd required to “coerce” the flux density to reduce its level to zero
Is called the coercive force, a measure of the coercivity of
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the magnetic sample. As the force -H is increased until saturation again
occurs and is then reversed and brought back to zero, the path def
results. If the magnetizing force is increased in the positive direction (-
H), the curve traces the path shown from f to b. The entire curve
represented by (bcdefb) is called the hysteresis curve for the
ferromagnetic material fig.(10).

~ Steel

Fig(9)

J,  Saturation

\ B (T) s o

B

max

Saturation

I —_—
|
|
|
|
|
|
&
A

> H (NI/])
H ’

Fig(10)

Page 11 of 30



Lecture 7 Magnetic Fields and Inductors by lecturer Inmar N.ghazi
2024/2025

AMPERE’S CIRCUITAL LAW

States that the algebraic sum of the rises and drops of the mmf around a
closed loop of a magnetic circuit is equal to zero; that is, the sum of the
rises in mmf equals the sum of the drops in mmf around a closed loop.
Sources of mmf are expressed by the equation:

F = NI

The equation for the mmf drop across a portion of a magnetic circuit:

F = R

A more practical equation for the mmf drop is :

¥ = Hi

This can be rewrittten as

S NI=) H( At

So:
NI=HI
I= current
= length of magnetic circuit
H=magnetizing force

N= number of turns

Page 12 of 30



Lecture 7 Magnetic Fields and Inductors by lecturer Inmar N.ghazi
2024/2025

Example (Series magnetic circuit of three different materials).

a
»d) Iron Steel
|
N turns §§2§ b
_.‘——.
I s Cobalt
-
EO ?F p— O
+NI — Hablab . Hbc'lbc Hca[ca 0
H_J a Y / . Y
Rise Drop Drop Drop
NI = Ib+Hb(IbC+HCa[C(I
N \
Impressed mmf drops
mmf
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THE FLUX ®

the sum of the fluxes entering a junction is equal to the sum of the fluxes
leaving a junction; that is, for the circuit of Fig. (11)

a
— ([)a — (])C
) 4 q)b
—— 1
A M% l
.
5 §
- ([)a - (I)C
b
Fig(11)
O, =P, + P, (at junction a)
or O, +P. =], (at junction b)

both of which are equivalent.

SERIES MAGNETIC CIRCUITS DETERMINING (N*)
to solve a magnetic circuit problems, which are basically of two types:

1- mmf (NI) must be computed.
This is the type of problem encountered in the design of motors,

generators, and transformers

2- NI is given, and the flux ¢ of the magnetic circuit must be found. This
type of problem is encountered primarily in the design of magnetic
amplifiers
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For magnetic circuits, the level of B or H is determined from the other
using the B-H curve, and p is seldom calculated unless asked for.
Lol
An approach frequently employed in the analysis of magnetic circuits is
the table method.

Before a problem is analyzed in detail, a table is prepared listing in the
extreme left-hand column the various sections of the magnetic circuit.
The columns on the right are reserved for the quantities to be found for
each section.

We will consider only series magnetic circuits in which the flux O is the
same throughout.

EXAMPLE (1) For the series magnetic circuit of Fig(12):

a. Find the value of | required to develop a magnetic flux of ¢= 4 x10 ™
Wbh.

b. Determine p and pr for the material under these conditions.

4 =2 X 1073 m?

Cast-steel core

[ = 0.16m
(mean length)

Fig.(12)

Solutions: The magnetic circuit can be represented by the system shown
in Fig. 13(a). The electric circuit analogy is shown in Fig. 13(b).
Analogies of this type can be very helpful in the solution of magnetic
circuits. Table (1) is for part (a) of this problem. The table is fairly trivial
for this example, but it does define the quantities to be found.

Page 15 of 30



Lecture 7 Magnetic Fields and Inductors by lecturer Inmar N.ghazi

2024/2025

T
(ON
| S :él-.‘

(b)
Fig.(13)
e e e s ]
Section @ (Wh) A(m) B(T) H (At/m) I(m) HI(At)
One contmuous section 4x 107 2x107° 0.16
Table (1)

a. The flux density B 1s

® 4xX10*Wb .
B=—= ——=2X10"'T=02T
A 2X 10" m”

Using the B-H curves of Fig. (8-a ), we can determine the magnetizing
force H:
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H (cast steel) = 170 At/m
Applying Ampere’s circuital law yields

NI = HI
_HI (170 At/m)(0.16 m) _
and 1= N - 200 ¢ = 68 mA

(Recall that t represents turns.)

B 02T

p=—

= —=—— =1.176 x 107> Wb/A-m
H 170 Atm

and the relative permeability 1s

Y 1.176 X 1073
= = —— = 935.83
b A X107
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EXAMPLE (2) Calculate the magnetic flux ¢ for the magnetic circuit of
Fig. (14).

A (throughout) = 2 x 10~ m?

/
L
?"“‘(])"“‘1:':,7' “““““ 'Tb
== |
:N = 60 tumns :
l
|
|
———————————————————————— oc
b%3am Cast iron
Fig.(14)

Solution: By Ampere’s circuital law,
NI = Habc‘da/ abeda
NI _ (605 A)
/abcda 0.3 m

300 At
0.3m

or H abeda —

= 1000 At/m

B (abcda) (from B-H Curve ) =0.39 T

B=2
A

So ¢=BxA
$=0.39 x 2x 10™
$=0.78 wb
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AIR GAPS
The spreading of the flux lines outside the common area of the core for

the air gap in Fig. 15 (a) is known as fringing. For our purposes, we shall
ignore this effect and assume the flux distribution to be as in Fig. 15. (b)
The flux density of the air gap in Fig. 15 (b) is given by

- c ~

7 N
T e A

I
|
\
pptod BT 1 . o
ﬂ'\\****rﬂl—i—’/ Air gap
AN
n | &~
\

fringing

Fig(15) Air gaps: (a) with fringing; (b) ideal.
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where, for our purposes.

D, =P

g core

and A =

g < Lcore

For most practical applications, the permeability of air is taken to be
equal to that of free space. The magnetizing force of the air gap is then
determined by

B
H, =—=
Mo
B, B,
H =—= .
., 41 X 10
H, = (7.96 X 10°)B, (At/m)
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Ex.(1) Find the value of | required to establish a magnetic flux of
®=0.75 x 10" **Wh in the series magnetic circuit in Fig. 16

All cast steel
/ Area (throughout)
v / = 1.5 x 10* m?
o —— e
- ob g+ Alr gap
c
|
iy N !
; ® ® = 075 x 107 Wb
N = 200 twrns '
! ‘—; |
b= ————4d
. 3
lult'luh = 100 x 107 m
Ipe = 2 % 107 m
Fig(16)

Sol. An equivalent magnetic circuit and its electric circuit analogy are

shown in Fig. 17 (a & b) :
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La)

R cdefab

"N
= <h,

|+

(b)
Fig.(17) (a) Magnetic circuit equivalent and (b) electric circuit

The flux density for each section is

d 075X 107*Wb

B = , 05T
A 1.5 X 107* m?
where, for our purposes,
D, =P
and A, =A

core
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From the B-H curves in Fig(8-a)

H (cast steel) = 280 At/m

H, = (7.96 X 10°)B, = (7.96 X 10°)(0.5T) = 3.98 X 10° At/m

8

The mmf drops are

H._ | = (280 At/m)(100 X 1073 m) = 28 At

core “core

H,l, = (3.98 X 10° AUm)(2 X 107 m) = 796 At

Applying Ampere’s circuital law,

NI — H core /care + [_]g /g
= 28 At + 796 At
(200 t)] = 824 At

[=412A

Faraday’s law of electromagnetic induction,

is one of the most important in this field because it enables us to
establish ac and dc voltages with a generator. If we move a conductor
through a magnetic field so that it cuts magnetic lines of flux as shown
in Fig. (18) a voltage is induced across the conductor that can be
measured with a sensitive voltmeter. the faster you move the conductor
through the magnetic flux, the greater the induced voltage. The

same effect can be produced if you hold the conductor still and move the
magnetic field across the conductor. Note that the direction in which you
move the conductor through the field determines the polarity of the
induced voltage. Also, if you move the conductor through the field at
right angles to the magnetic flux, you generate the maximum induced
voltage. Moving the conductor parallel with the magnetic flux lines
results in an induced voltage of zero volts since magnetic lines of flux
are not crossed.
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Faraday’s law:

d
e = Nd—qf (volts, V)

Lenz’s law

This important phenomenon can now be applied to the inductor in
Fig.(19) , the magnetic flux linking the coil of N turns with a current |
has the distribution shown in Fig. (19). If the current through the coil
increases in magnitude, the flux linking the coil also increases. The coil
in the vicinity of a changing magnetic flux will have a voltage induced
across it. The result is that a voltage is induced across the coil in Fig.
(19) due to the change in current through the coil.

It is very important to note in Fig. (19) that the polarity of the induced
voltage across the coil is such that it opposes the increasing level of
current in the coil. In other words, the changing current through the coil
induces a voltage across the coil that is opposing the applied voltage that
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establishes the increase in current in the first place. The quicker the
change in current through the coil, the greater the opposing induced
voltage to squelch the attempt of the current to increase in magnitude.

Lenz’s law

an induced effect is always such as to oppose the cause that produced
it.

Self inductance

inductors are designed to set up a strong magnetic field linking the
unit, whereas capacitors are designed to set up a strong electric field
between the plates.

Inductance is measured in henries (H).

p = permeability (Wb/A - m)

,uNzA N = nu?mber of turns (t)
L= A=m"
l [ =m
L = henries (H)
L= fh,
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e p,NPA
B /

p,N?A

or L =47 X 1077 1

(henries, H)

If we break out the relative permeability as follows:

N A
== “(f)

we obtain the following useful equation:

L=uplL,

Note:

The inductance of an inductor with a ferromagnetic core is u, times
the inductance obtained with an air core.

L=pulL,
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Types of Inductors

Fixed-type inductors come in all shapes and sizes

PRI < | mH
TAA R =130

Variable A number of variable inductors ,the inductance is changed by
turning the slot at the end of the core to move it in and out of the unit.

v 8

INDUCED VOLTAGE

a voltage will be induced across the coil as determined by Faraday’s
law:

d
th

e =

(volts, V)
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The greater the number of turns or the faster the coil is moved through
the magnetic flux pattern, the greater the induced voltage.

the induced voltage across an inductor

di;

v, = La’r (volts, V)

the larger the inductance and/or the more rapid the change in current
through a coil, the larger will be the induced voltage across the coil.

ENERGY STORED BY AN INDUCTOR

W

stored

1
= ;LI 2 (joules, J)
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Ex. If the core of Figure below is cast iron and ¢ = 0.1 x 1073Wh, what is the
coil current?

L 3
— "
I

Mean path length = 0.25 m
N =500 turns
A=02 x 1073 m?

Solution Following the four basic steps:

1. The flux density is
-3
B=2= 0.1 X 10_3 — 05T
A 0.2 X 10

2. From the B-H curve (cast iron), H = 1550 At/m.

3. Apply Ampere’s law. There is only one coil and one core section. Length =
0.25 m. Thus,

H€ = 1550 X 0.25 = 388 At = NI
4. Solve for I:
I = HE€/N = 388/500 = 0.78 amps

Page 29 of 30



Lecture 7 Magnetic Fields and Inductors by lecturer Inmar N.ghazi
2024/2025

Exercise:

Find the current necessary to establish a flux of &= 3 x 10 W, in the series
magnetic circuit in Fig. below:

Cast iron

rd L/ Sheet steel
I rd

Iiron core — [slccl core — 0.3 m
' < o)
Area (throughout) = 5 X 107% m?

N = 100 turns

Exercise: Find the reluctance of a magnetic circuit if a magnetic flux
d= 4.2x 10™ W, is established by an impressed mmf of 400 At.
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(Ch.13 in boylistad )

Alternating Waveforms

()l \/T 0

Sinusoidal Square wave Triangular wave

e Important parameters for a sinusoidal voltage fig.(1).

Max
X -

Fig (1) important parameters for a sinusoidal voltage

a- Waveform plotted as a function of some variable such as time (as above), position,

degrees, radians, temperature, and so on.
b- The magnitude of a waveform at any instant of time; denoted by lower case letters

(el, e2 in Fig. 1).
c- Peak amplitude: The maximum value of a waveform as measured from its average,

or mean, value, denoted by uppercase letters [such as Em (Fig. 1)
d- Peak value: The maximum instantaneous value of a function as measured from the

zero volt level.
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e- Peak-to-peak value: Denoted by (E p-p or V p-p) (as shown in Fig. 1), the full
voltage between positive and negative peaks of the waveform, that is, the sum of
the magnitude of the positive and negative peaks

f-  Periodic waveform: A waveform that continually repeats itself after the same

time interval. The waveform in (Fig. 1) is a periodic waveform.

g- Period (T): The time of a periodic waveform

h- Cycle: The portion of a waveform contained in one period of time the cycles within
T1, T2, in Fig. (1) May appear different in Fig. (2), but they are all bounded by one
period of time and therefore satisfy the definition of a cycle.

| | cycle ———ai fe———— | CyCl¢ ———s]

A DN/
V| |V

Fig(2) Defining the cycle and period of a sinusoidal waveform

I- Frequency ( f): The number of cycles that occur in 1 s.
The unit of measure for frequency is the hertz (Hz), where

| hertz (Hz) = 1 cycle per second (cps)
f=—| J[=Hz
; T T = seconds (s) —> 1
=
T =—
/ > 2

Ex.1) For the sinusoidal waveform in Fig. (3)
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What is the peak value?

What is the instantaneous value at 0.3 s and 0.6 s?
What is the peak-to-peak value of the waveform?
What is the period of the waveform?

How many cycles are shown?

What is the frequency of the waveform?

S SRR T O

U

8VE-

0.6 (.8, 1.0 1.2 1.4 1(s)
Fig.(3)
Solutions:
a. 8V.
b. At0O3s,. —8V:at0.6s.0V.
c. 16V,
d. 0.4s.

e. 3.5 cycles.
f. 2.5 ¢ps,or 2.5 Hz.
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(Example 2)Find the period of periodic waveform with a frequency of:

a. 60 Hz.
b. 1000 Hz.

Solutions:

| |
a T =—= = (.01667 s or 16.67 ms
[ 60 Hz

(a recurring value since 60 Hz is so prevalent)
I I g

B =E=a=m—— =107/ =1ms
f 1000 Hz

Example 3) Determine the frequency of the waveform in Fig. (4)

Ae
10V

=0
thn
—_—
N
o
n
9
n
~
—
=
-
s

Fig(4)

Solution: From the figure. 7= (25 ms — Sms)or (35 ms — 15 ms) =
20 ms, and

| !
f=—=-—""— =50Hz
’ T 20X 1077s
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e Polarities and Direction(fig.5)

(a) (b)
Fig.(5) (a) Sinusoidal ac voltage sources  (b) sinusoidal current sources.
THE SINUSOIDAL WAVEFORM

The sinusoidal waveform is the only alternating waveform whose shape is
unaffected by the response characteristics of R, L, and C elements.(fig.6)

R LorC |t Av—”

Fig.(6)
The sine wave is the only alternating waveform whose shape is not altered by the
response characteristics of a pure resistor, inductor, or capacitor.
The unit of measurement for the horizontal axis can be time (as appearing in the figures
thus far), degrees, or radians. The term radian can be defined as follows: If we mark off
a portion of the circumference of a circle by a length equal to the radius of the circle, as
shown in Fig. (7), the angle resulting is called 1 radian. The result is:
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oo~ YIS
'/" \\‘
””/ \.\I‘ ,"‘ ‘ '
/ // /,i—a,l—l ruckian
.' /57296° |\ |
\ L2080 ¥

1 rad = 57.296° = 31.3°

One full circle has 27x radians

2qr rad = 360°

The quantity = is the ratio of the circumference of a circle to its diameter.
Although the approximation n = 3.14

The conversions equations between the two (radian and degrees) are the following:

Radi i (d )

adians = rees

idians 130° egree I
180° :

Degrees = - | X (radians)
[y _ 5, 4
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Applying these equations, we find

90°: Radians = ——(90°) = — rad

180° 2
30°: Radians = ——(30°) = — rad
180° 6

T 180°(
—rad: Degrees = — ] = 60°
3 ® \3
37 180° ( 37
——rad: Degrees = (—) = 270°
™ 2
See fig.(8)
YIRFRNT S pU. i, el
| |
1 (R .
E i i 225°270°315°360° i E i _%- 37 I- -
0 457 9071357 | S§® E E i o (degrees) 0 '_I -2 _’— E E E a (radians)
Pl ' R
1 : | : 1
1 1
(a) (h)
(a) degrees (b) radians.

Fig(8) Plotting a sine wave
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1- GENERAL FORMAT FOR THE SINUSOIDAL VOLTAGE OR CURRENT

The basic mathematical format for the sinusoidal waveform is:

A, sin a

. IR0 2m 360

(% orrad)

Fig(9) Basic sinusoidal function.

where Am is the peak value of the waveform and a is the unit of measure for the
horizontal axis, as shown in Fig. (9)
the general format of a sine wave can also be written:

A sin wf

m

with ot as the horizontal unit of measure
For electrical quantities such as current and voltage, the general format is:

i =1, sinwt =1, sin «
e =E, sinwt =E, sin «

Where the capital letters with the subscript (m) represent the amplitude, and the
lowercase letters( i) and( e )represent the instantaneous value of current and voltage,
respectively, at any time( t)
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Example 4). Given e=5 sin o, determine e at oo =40° and 0=0.8x.
Solution: For a = 40°,

e = 5sin 40° = 5(0.6428) = 3.21V

For a = 0.87.
180°
a(") = —(0.87r) = 144°
T
and e = 5sin 144° = 5(0.5878) = 2.94V
e =E, sin
3 e
Siha =
m
which can be written
. 1 €
A = SIN = | e (8
m

Similarly, for a particular current level,

a = sin”!

i
Ly

Example 5)
a. Determine the angle at which the magnitude of the sinusoidal function:

v=10sin377tis4 V.
The magnitude is attained.

Solutions:

1 = sin~!—— = sin"! 0.4 = 23.58°

—
a; = sin  —
B 10V
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From the fig.(10)

) o) 90 0ty 180

Fig(10)

the magnitude of 4 V (positive) will be attained at two points between 0° and 180°. The
second intersection is determined by:

a, = 180° — 23.578° = 156.42°

g Note) keep in mind that Egs. (8) and (9) will provide an angle with a magnitude
between 0° and 90°.

a = wf, and so f = a/w.

(o) must be in radians.

10
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(rad) = ——(23.578°) = 0.412 rad
a(rad) = 23.578°%) = 0.412 rac
180°
a 0412rad
and h=—=———"">=109ms
@ 377 rad/s

For the second intersection.

T
a (rad) = 1—(156.422‘:‘) = 2.73 rad

273 rad
377 rad/s

o
= = 7.24 ms
D)

Example 6) Given i = 6 * 10° sin 1000t, determine i at t =2ms
Solution:

a = ot = 1000t = (1000 rad/s)(2 X 1073 s) = 2 rad

180°
a(?) = —— (2rad) = 114.59°
7 rad

i = (6 X 1073)(sin 114.59°) = (6 mA)(0.9093) = 5.46 mA

2- PHASE RELATIONS

If the waveform is shifted to the right or left of ©°, the expression becomes

A, sin(wf = 0)

Here @ is the angle in degrees or radians that the waveform has been shifted. If the
waveform passes through the horizontal axis with a positive going (increasing with
time) slope before 0°, as shown in Fig. (11), the expression is:

A, sin(wt + 0)

11
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A
_L_ [ m

; Wi
A, sinf) ( :

Tw-) 7

Fig(11)

At ot = a = 0°, the magnitude is determined by Am sin ©. If the waveform passes

through the horizontal axis with a positive-going slope after 0°, as shown in Fig. (12),
the expression is:

—A,,sinf / \/ «

Fig(12)

A, sin(wt — 0)

If the waveform crosses the horizontal axis with a positive-going slope 90° (w/2), as
shown in Fig. (13), it is called a cosine wave; that is,

: , 0y
sin(wt + 90°) = sm(wi + 7) = cos wf

, o m
or sin ot = cos(wt — 90°) = COS(wf = —)

12
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4
sin o
_ 3
2 2T
|
/ Qo
¥
/
~ ”’

Fig.(13) Phase relationship between a sine wave and a cosine wave.

The terms leading and lagging are used to indicate the relationship between two
sinusoidal waveforms of the same frequency plotted on the same set of axes. In Fig.
(14), the cosine curve is said to lead the sine curve by 90°, and the sine curve is said to
lag the cosine curve by 90°. The 90° is referred to as the phase angle between the two
waveforms.

The phase relationship between two waveforms indicates which one leads or lags the
other, and by how many degrees or radians.

3- relationship between specific sine and cosine functions

cos a = sin(a + 90°)
sin @ = cos(a — 90°)
—sin @ = sin(a = 180°)
—cos a = sin(a + 270°) = sin(a — 90°)

etc.

In addition, note that

sin(—a) = —sin «

cos(—a) = cos a

13
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FOR THE SINUSOIDAL VOLTAGE

e = —E, sin wt

Become

e = E,(—sin wf)

Since —sin wf = sin(wf = 180°)
the expression can also be written

e = E,, sin(wt = 180°)

revealing that a negative sign can be replaced by a 180° change in phase
angle (+ or —); that is,

¢ = —FE,sinwt = E,, sin(wf + 180°) = E,, sin(wf — 180°)

EXAMPLE 7) What is the phase relationship between the sinusoidal waveforms of each
of the following sets?

a. v= 10 sin(wf + 30°)
I = Ssin(wt + 70°)

b. i = 15 sin(wf + 60°)
v = 10 sin(wf — 20°)

c. I = 2cos(wt+ 10°)
v = 3 sin(wf — 10°)

d. i = —sin(wf + 30°)
v = 2sin(wf + 107)

e. 1 = —2cos(wt — 60°)

v = 3 sin(wt — 150°)

14
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Solution:

a)
i leads v by 40°, or v lags i by 40°.

( Sinusoidal Alternating Quantities.)
(By lecturer: Inmar N. Ghazi) 20242025

Fig.(14)
b) i leads v by 80°, or v lags i by 80°.
A
i b~
: !
10 15
1 O' | | l i | I:' -
P ——; ; s T 3 27, wl
T2 | o 2 27
—» |«—2()°
- 80°—

Fig.(15)

15
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i = 2 cos(wf + 10°) = 2 sin(wf + 10° + 90°)
= 2 sin(wf + 100?)

i leads v by 110°, or v lags i by 110°.

— o

Fig.(16)

d. Note

—sin(wt + 30°) = sin(wtf + 30° — 180°)
= sin(wf — 150°)

v leads i by 160°, or i lags v by 160°.
Or using _Note
Y
—sin(wt + 30°) = sin(wf + 30° + 180°)
= sin(wf + 210°)

i leads v by 200°, or v lags i by 200°.

16
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w

2

10°
e. By choi

y/ y choice
[ = —2 cos(wf — 60°) = 2 cos(wf — 60° —180°)
= 2 cos(wt — 240°)
A
U

| | ; 4 1 : | (I)[

T 0 T | T 3
s — =T

2 2 2

<+— 150°
Fig.(18)

17
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However, cos a = sin(a + 90°)

so that 2 cos(wt — 240°) = 2 sin(wf — 240° + 90°)
= 2 sin(wf — 150°)

v and i are in phase.

4- AVERAGE VALUE

area under curve

Average speed = -
length of curve

iIf we let G denote the average value, The algebraic sum of the areas become:

algebraic sum of areas

G (average value) = :
length of curve

Example(8)
Determine the average value of the waveforms in fig.(19)
Fig.(1-9)
A U 1 U?_
S’ 0 ,v‘ e
(Square wave) 14V
10V —
0 1 |2 B |4 rmy 0 1 2 [B |4 r@my
-6V
-10V
(b)

Fig.(19)

18
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Solution:

a)

10V)(I ms) — (10 V)(] ms 0
= ( )(1 ms) — ( )( ) = =
2 ms 2 ms

b)

o (14V)(Ims) —(6V)(Ims) 14V -6V 8V 4V

2 ms 2 2

Example (9 ):Find the average values of the following waveform over one full
cycle in fig.(20):

Ai(A)
- 1 cycle -
) P
0 6 8 _
DY I | 2 4 | I 10
-10

Fig(20)

Solution:

G = —(10V)(2ms) + (4V)2ms) — (2V)(2 ms)

10 ms
—20V+8V -4V 16V
10 10

=—-1.6V

19
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For sine wave:

the area of the positive (or negative) pulse of a sine wave is 2A,,.

Area = 2A,,

Example (10) Determine the average value of the sinusoidal waveform in Fig. (21)

<« | cycle ———»

Fig(21)

Solution:

~ +: 2‘4m = ZAm 7
G = — 0 \
27

The average value of a pure sinusoidal waveform over one full cycle is zero.

20
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Example (11): Determine the average value of the waveform in Fig. (22):

Ao (V)
ks I cycle |
10 — = - — -
Sine wave
0 v 271' o
fig.(22)

Solution:
24,,+0 _2(10V)

21 2T

=3.18V

5- EEFECTIVE (rms) VALUES

the equivalent dc value of a sinusoidal current or voltage is( 1/ v2) or (0.707 ) of its
peak value.

The equivalent dc value is called the(root-mean-square) (rms) value or effective
value of the sinusoidal quantity.

I
Irms = S~ IIH = ()'7()7,III
V2

m

I
Ecws = 75 Em = 0.707E
V2

Similarly,

L, =V2I_. = 1414I_

m

E. = V2E. = 1414E,,

21
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Example (12) Find the rms values of the sinusoidal waveform in each part in Fig(23):

. AU
di(mA) 1{mA)

169.7 V

(h) (c)

Fig.(23)

Solution: For part (a), I, = 0.707(12 X 1073 A) = 8.48 mA. For
part (b), again /,,, = 8.48 mA. Note that frequency did not change the ef-
fective value in (b) compared to (a). For part (¢), V,,, = 0.707(169.73 V) =
120 V, the same as available from a home outlet.

Example (13) The 120 V dc source in Fig.[ (24)(a)} delivers 3.6 W to the load.
Determine the peak value of the applied voltage (Em) and the current (Im) if the ac
source [Fig. (24)(b)] is to deliver the same power to the load.

P=36W

- =120V P=36W
Load

] —
f Load

Fig.24

22
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Solution:
Py = Valy
Pd\. 3() \\(
and I, = = - = 30 mA
Ve 120V
I, = V2, = (1.414)(30 mA) = 42.42 mA

E, = \V2E, = (1.414)(120 V) = 169.68 V

Example(14): Find the rms value of the waveform in Fig.(25)

AU (V)
- 1 cycle ==:
|
3 |
|
|
0 4 8 .
=== = = = r(s)
Fig.25
Solution: V2 in fig.(26)
p 2 (V)
O
— 1)? = 1
o o )
1 I =
O } 8 7(s)
Fig.26

23



Lec.8a ( Sinusoidal Alternating Quantities.)
(Ch.13 in boylistad ) (By lecturer: Inmar N. Ghazi) 2024/2025

%

rms

‘J®X®+WU“): 2 224V

8 8

Example(15) : Calculate the rms value of the voltage in Fig (27):

Av (V)
- [ cycle -
______________ l l ”
-2 4 6 8 10 1(s)
~10
Fig.(27)
Solution :v2in fig.(28)
do? (V)
100
16
< S ———— L - - o . .
0 2 4 6 8 10 1(s)
Fig.(28)

24
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Example(16): Determine the average and (rms )values of the square wave in Fig. (29):

Av (V)
40
0 10 20 r('ms_)
—=4() = = =

Solution: V2in fig.(33)

1 ¢yele—=*

Fig.(29)

[(1600)(10 X 1077) + (1600)(10 X 1077)

‘I

;/(32.()0() X 1077)

VYV 20x 1073

e N 20 X 1073

V1600 = 40 V

(the maximum value of the waveform in Fig.(30)

16(0) p

b2 (V)

|
!
-
[
!
'

-

fo—

20 r(ms)

Fig.(30)

25



Lecture 8b “sinusoidal alternating quantities " Ch. 14 in boylistad
by lecturer Inmar N. Ghazi (2024/2025)

6- RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL
VOLTAGE OR CURRENT

a- Resistor: resistance is, for all practical purposes, unaffected by the frequency of the applied
sinusoidal voltage or current.

20

I
L,

Determining the sinusoidal response for a resistive element

v Y V,sinwt V, .
=—=—= sin wt = [, sin w!

R R R "

v=IiR=(l,sinw)R =1I,R sinwt =V, sin wt

m m

Vi = It

A plotofvandiin Fig(1l) reveals that

Fig.(1) The voltage and current of a resistive element are in phase.

Page 1 of 20
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for a purely resistive element, the voltage across and the current through the
element are in phase, with their peak values related by Ohm’s law.

for an inductor, v; leads i; by 90°, or i; lags v; by 90°.
b- Inductor: ' y

in fig.(2):

(®)

L: v; leads i; by 90%
(’L
Vin—— :
7
Ly 3
>
T——(0 T ™ 21 wt
2 90° 2

Fig.(2) For a pure inductor, the voltage across the coil leads the current through the coil by
90°.
ip = I, sin(wt * 0)

m

v; = wlLl, sin(wt = 6 + 90°)

The quantity WL, called the reactance of an inductor, is symbolically represented by XL
and is measured in ohms;

XL = wlL

In an Ohm’s law format, its magnitude can be determined from:

Page 2 of 20
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by lecturer Inmar N. Ghazi (2024/2025)
‘/m
X, = (ohms, ())
m
c- Capacitor

or a capacitor, i leads v, by 90°, or v, lags i, by 90°.
/4 ) :
In fig.(3):

C: i¢leads ve by 907
3

- 7‘

=1
5

= 90

IJ|=1

Fig.(3) The current of a purely capacitive element leads the voltage across
the element by 90°.

., sin(wtf = 0)

ic = owCV, sin(wt = 6 + 90°)

m

UC:V

The quantity (1/wc) called the reactance of a capacitor, is symbolically represented by
XC and is measured in ohms; that is:

s
wC

Xc (ohms, )

In an Ohm’s law format, its magnitude can be determined from:
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Xe = (ohms. {))
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It is possible to determine whether a network with one or more elements is predominantly
capacitive or inductive by noting the phase relationship between the input voltage and

current.

Note: If the source current leads the applied voltage, the network is
predominantly capacitive, and if the applied voltage leads the source current,

it is predominantly inductive.

Examplel: The voltage across a resistor is indicated. Find the sinusoidal expression
for the current if the resistor is 10 Q. Sketch the curves for v and i.

a. v= 100 sin 377t
b. v =25sin(3771 + 60°)

Solution: a)

. V,, 100V oA
"R 100

(v and 7 are in phase), resulting in

1 = 10 sin 377¢

The curves are sketched in Fig. below:

4

m

V. = 100V r

I
_— In phase
//

L. = 10A

m

2
=)

Page 4 of 20
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Solution: b)

(vand i are in phase), resulting in
i = 2.5sin(377¢ + 60°)

The curves are sketched in Fig. below:

Example2:
The current through a 5 Q resistor is given. Find the sinusoidal expression for the voltage

across the resistor for
i= 40 sin(377t +30°).

Solution:
Vm=Im.R= (40 A)(5 Q)=200V
(vand i are in phase), resulting in ——= v =200 sin(377t + 30°)

Example 3: The current through a 0.1 H coil is provided. Find the sinusoidal expression
for the voltage across the coil. Sketch the v and i curves.

a. i = 10 sin 377t
b. i = 7 sin(377t — 70°)

Page 5 of 20
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Solution:

X; = oL = (377 rad/s)(0.1 H) = 37.7 Q
V,=1X, = (10 A)37.7Q) =377V

and we know that for a coil v leads i/ by 90°. Therefore,

v = 377 sin(377t + 90°)

The curves are sketched below:

Ul. Vm = 377 V
v leads i by 90° I, =10A
m -
I
oz 0 T 4 3 — 2T «
2 2 ol

b. X, remains at 37.7 ).
V.= 1,X.=(TAN37.7TQ)=2639V
and we know that for a coil v leads i by 90°. Therefore,

v = 263.9sin(3771 — 707 + 90°)

v =263.9 sin(377t — 70° + 90°)

and
v = 263.9 sin(377t + 20°)

Page 6 of 20
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The curves are sketched below:

V. = 2639V

v leads i by 90

Example 4: The voltage across a 0.5 H coil is provided below. What is the sinusoidal
expression for the current?

v = 100 sin 201

Solution:

X; = oL = (20rad/s)(0.5 H) = 10 Q)

i V100V _ i
Xy 109

and we know the 7 lags v by 90°. Therefore,

i = 10 sin(20¢f — 90°)

Example 5: The voltage across a 1 uF capacitor is provided below. What is the sinusoidal
expression for the current? Sketch the v and i curves.

v = 30 sin 4007

1 1 10 Q) .
wC (400 rad/s)(1 X 107°F) 400

v, 30V
[ =—== = 0.0120A = 12 mA
X. 25000

Page 7 of 20
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and we know that for a capacitor / leads v by 90°. Therefore,
i =12 X 1077 sin(400¢ + 90°)

The curves are sketched below:

> i leads v by 90°.

Example 6: The current through a 100 u«F capacitor is given. Find the sinusoidal
expression for the voltage across the capacitor.

i = 40 sin(5007 + 60°)

Solution:

| | 10 Q) 10 Q)
XC= —_— o

v =\ e _6 - 4 = o — 2() Q
wC  (500rad/s)(100 X 107" F) 5 X 10 5
Vy = IXe = (40 A)(20 Q) = 800 V

and we know that for a capacitor, v lags i by 90°. Therefore,

v = 800 sin(500f + 60° — 90°)
and v = 800 sin(500¢f — 30°)

Example 7

For the following pairs of voltages and currents, determine whether the element involved

IS a capacitor, an inductor, or a resistor. Determine the value of C, L, or R if sufficient
data are provided:

Page 8 of 20
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a, v =100 sin(wr + 407)
i = 20 sin{wi + 407)
b, v = 1000 sin(377t + 107)
1= 5sin(3771 — 80°)
¢. v=>500sin(157r + 307)
[ =1 sin(157¢ + 120°)
d. v = 50 cos(wr + 207)
i = Ssin(wr + 1107)

Solutions:

a. Since v and 7 are in phase, the element is a resistor, and

Vu _ 100V _ oo
I, 20A

R =
b. Since v leads i by 90°, the element is an inductor, and

V,, 1000 V
B 5A

= 200 Q)

XL:

so that X; = @wL = 200 () or

200 Q) 200 Q) _
L= = =0.53H
w 377 rad/s

c. Since i leads v by 90°, the element is a capacitor, and

X =V"'=500V=SOOQ
€ 1A
1
so that XC=—C=SOOQ or
wC
1 1

= = = 12.74 pF
w500 Q (157 rad/s)(500 Q) a

d. v =50 cos(wf + 20°) = 50 sin(wt + 20° + 90°)
= 50 sin(w?f + 110°)

Since v and i are in phase, the element is a resistor, and

Vm _ 50V
R=—=—"7"-=10Q
I, SA

Page 9 of 20
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7- FREQUENCY RESPONSE OF THE BASIC ELEMENTS

a- Resistor R: For an ideal resistor, you can assume that frequency will have absolutely no
effect on the impedance level, as shown by the response in Fig.(4):

2
-
(-

i

L

R

! >
10 15 20 f(kHz)

L

Fig.(4)

b- Inductor L: For the ideal inductor, the equation for the reactance can be written

X; = oL = 27fL

The response of X, with frequency is shown in fig. (5)

S /
4 -
3L L = 100 mH /,/
2 Increasing L
1 L = 20mH
| | | | -
0 10 15 20  f(kHz)

\ 5

X; =0Qatf=0Hz

Fig.(5) X, versus frequency.

at a frequency of 0 Hz, an inductor takes on the characteristics of a short circuit, as
shown in fig.(6) by use the equation of X, =2afL:

Page 10 of 20
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L f=0Hz [ = very high frequencies
Fig.(6)

at very high frequencies, the characteristics of an inductor approach those of an open
circuit, as shown in Fig.(6)

c- Capacitor C: For the capacitor, the equation for the reactance :

1
Xe = 2arC

The response of X with frequency is shown in fig. (7)

A X (kQ)

C = 0.01 uF

Increasing C
C = 0.03 uF

Fig.(7)

at or near 0 Hz, the characteristics of a capacitor approach those of an open circuit, as
shown in Fig.(8)

I/ f=0Hz f= very high frequencies
o IC o * —0 o—— * o o
C

Fig.(8)
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at very high frequencies, a capacitor takes on the characteristics of a short circuit, as
shown in Fig.(8)

Note: As frequency increases, the reactance of an inductive element increases while
that of a capacitor decreases, with one approaching an open-circuit equivalent as the
other approaches a short-circuit equivalent.

Example 8): At what frequency will the reactance of a 200 mH inductor match the
resistance level of a 5 kQ resistor?

Solution: The resistance remains constant at 5 k() for the frequency
range of the inductor. Therefore,
R = 5000 Q = X; = 2afL = 27Lf
= 27(200 x 103 H)f = 1.257f
5000 Hz

and f=———— =398 kHz
‘ 1.257

Example 9) :At what frequency will an inductor of 5 mH have the same reactance as a
capacitor of 0.1 uF?

Solution:
X. = Xc
9] ]‘ l
LT —
: 2wfC
fr= |
* A7’LC
and
‘ I 1
J=

27VLC  27V(5 X 103 H)(0.1 X 10°°F)

I I 10° Hz
- T e s — = 7.12 kHz
20V5 X 10710 (27)(2.236 X 107°) 14.05

Page 12 of 20
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8- AVERAGE POWER AND POWER FACTOR

For purely resistive load

consider the relatively simple configuration in Fig. (9) where an 8 V peak sinusoidal
voltage is applied across a 2 Q resistor. When the voltage is at its positive peak, the

power delivered at that instant is 32 W as shown in the figure. At the midpoint of 4 V, the
instantaneous power delivered drops to 8 W; when the voltage crosses the axis, it drops to
0 W. Note, however, that when the applied voltage is at its negative peak, the current may
reverse but, at that instant, 32 W is still being delivered to the resistor.

WiRZ-I»A
8VR 2 Q) S
= AVRZ20Q
bop © P=1R Npogw

=32W

Fig(9) Demonstrating that power is delivered at every instant of a sinusoidal voltage
waveform (except Vg =0 V).

1- Even though the current through and the voltage across reverse direction and
polarity, respectively, power is delivered to the resistive load at each instant of
time

2- The fact that the power curve is always above the horizontal axis reveals that
power is being delivered to the load at each instant of time of the applied
sinusoidal voltage.fig.(10)
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Power
delivered to
element by
source

Power
returned to
source by
element

Fig.(10) Power versus time for a purely resistive load.

The average value of the power curve occurs at a level equal to( Vm Im)/2 as shown in
Fig. (10) This power level is called the average or real power level. It establishes a
particular level of power transfer for the full cycle.

VIH IIII _ ( \//5 Vrms)( \//5 Il’l'l’lS) 2 ‘/IT[]S]I'I’IIS

aX 2 9, 9,

P-f:l".-’ - VI"I]’IS "I'ITIS
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If the sinusoidal voltage is applied to a network with a combination of R, L, and C
components, fig.(11):

o SIN (wf + 6;)

i=1I
O
P—

v=V

' SIN (@I +0,) Load

Fig.(11) Determining the power delivered in a sinusoidal ac network.

p =vi =V, sin(wf + 0,1, sin(wt + 6;)
=V, I, sin(wf + 8,) sin(wt + 6,)

the magnitude of average power delivered is independent of whether v leads i or i leads
v. fig.(12)

/
‘%]'" cos(6, — 6;)

-

wl

Fig.(12) Defining the average power for a sinusoidal ac network.
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Lecture 8b

“sinusoidal alternating quantities "

by lecturer Inmar N. Ghazi

V. I
P = —'; = cos O

(watts, W)

Ch. 14 in boylistad
(2024/2025)

where P is the average power in watts. This equation can also be written

(0

Vo = vm
eff —

or, since and Ig=
P =V, s cOs B
Resistor
In a purely resistive circuit, since v and i are in phase, | 0, — 0; | ==
0°, and cos 8 = cos 0° = 1, so that
Vo .
P = ;m = Vrmslrms (W)
V.
Or, since L. =—
rms R
V2
then P= %S' = lgnsR (W)
Inductor
In a purely inductive circuit, since v leads i by 90°, |91, == 0,~| =0 =
| —90° | = 90°. Therefore,
N II} v"lllll
=—-c0590° =——0) = OW

The average power or power dissipated by the ideal inductor (no

associated resistance) is zero watts.

)cosO

1 m
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Lecture 8b “sinusoidal alternating quantities " Ch. 14 in boylistad
by lecturer Inmar N. Ghazi (2024/2025)

Capacitor
i|:9:

In a purely capacitive circuit, since i leads v by 907,
| —90° | = 90°. Therefore,

VIII]III VI)I[IH 7
P =—7"c0s(90°) = ~2"(0) = 0 W

The average power or power dissipated by the ideal capacitor (no
associated resistance) is zero watts.

Example(10) Find the average power dissipated in a network whose input current and
voltage are the following:
i = 5 sin(wt + 40°)
= 10 sin(wt + 40°)
Solution: Since v and i are in phase, the circuit appears to be purely resistive at the input
terminals. Therefore,:

VI o (10V)5A)

P — mm = 4 — 25 \‘,’
2 2
V. 10V
or R = = ——=2/()
1 5A
Vims _ [(0.707)(10
and P = = =28W
R 2
or P=1I%R=1[(0707)5A)](2) =25W

For the following example, the circuit consists of a combination of resistances and
reactances producing phase angles between the input current and voltage different from 0°
or 90°.

Example (11): Determine the average power delivered to networks having the following
input voltage and current:

a. v = 100 sin(wf + 40%)

i = 20 sin(wf + 70°)
150 sin(wt — 70%)
[ = 3 sin(wf — 507)

=3
e
I
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Lecture 8b “sinusoidal alternating quantities " Ch. 14 in boylistad

by lecturer Inmar N. Ghazi (2024/2025)
Solutions:
a. V,, =100, 8,=40°
I, =20A, 6,=170°
0=16,—0, =|40°—70°| = | =30°| =30°
and
Vi 100 V)(20 A ,
P=—""cosf = ( )20 4) cos(30°) = (1000 W)(0.866)
2 2
= 866 W

b. Vm = 150 V. 91: = —7(0°
In=3A, 6;=-50°

0= 10,—0] =|-70° - (50|
= | =70° + 50°| = | —20°| = 20°
and
VIIIIIH (15() V)(3 A) S = p= 2
P=——cos8 = cos(20°) = (225 W)(0.9397)
2 2
= 21143 W

9- Power Factor

Power factor = F, = cos 0

P

F.o=cos = ——
Vrm 5 '{rm 5

”

The terms leading and lagging are often written in conjunction with the power factor.
They are defined by the current through the load. If the current leads the voltage across a
load, the load has a leading power factor .If the current lags the voltage across the load,
the load has a lagging power factor.

Note: capacitive networks have leading power factors, and inductive networks have
lagging power factors.
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Lecture 8b

by lecturer Inmar N. Ghazi

EXAMPLE( 12)

“sinusoidal alternating quantities "

Ch. 14 in boylistad
(2024/2025)

Determine the power factors of the following loads ,and indicate whether they are

leading or lagging .

a. Fig.1
b. Fig.2
c. Fig.3

—. | =

2 sin(wr + 40°)

N (—

20%)

v= 50 sin(wr

Load

20 sinf et + 80°)
sin(wt + 30%)

o

Fig.2

Fig.3
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Lecture 8b “sinusoidal alternating quantities " Ch. 14 in boylistad

by lecturer Inmar N. Ghazi (2024/2025)
Solutions:
a. F,=cosf = cos | 40° — (—20°) | = cos 60° = 0.5 leading
b. F,=cos 6 |80° — 30° | = cos 50° = 0.64 lagging
P 100 W 100 W
c. F,=cosl = = = =

Vil (20V)(5A)  100W

&

The load is resistive, and F, 1s neither leading nor lagging.
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