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Number Systems: 

 Many number systems are in use in digital technology. The most common 

are the decimal, binary, octal, and hexadecimal systems. The decimal system is 

clearly the most familiar to us because it is the tool that we use everyday. 

Examining some of its characteristics will help us to better understand of other 

systems. 

 

Decimal System: 

  The decimal system is composed of 10 numerals or symbols. These symbols 

are 0,1,2,3,4,5,6,7,8,9; using these symbols as digits of a number, we can express 

any quantity. The decimal system is also called the base-10 system. The decimal 

system is a positional-value system in which the value of a digit depends on its 

position. For example, consider the decimal number 453. We know that the digit 4 

actually represents 4 hundreds (400), the 5 represents 5 tens (50), and 3 represents 

3 units. 

 In essence, the 4 carries the most weight of these digits; it’s referred to us 

the most significant digit (MSD). The 3 carries the least weight and is called the 

least significant digit (LSD). 

Example: consider the decimal number 27.35; this number is actually equal to: 

 

The decimal point is used to separate the integer and the fractional parts of the 

number. 

 

 

 

 

Binary System: 

 In the binary system there are only two symbols or possible digit values, 0 

and 1. Even so, this base-2 system can be used of represent any quantity can be 

represented in decimal or other number systems. The binary number system of 

Table (1) is nothing more than a code. After some practice, it becomes almost as 

familiar as the decimal number system. 
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Binary-to-Decimal Conversion: 

 The binary number system is a positional system where each binary digit 

(Bit) carries a certain weight based on its position relative to the LSB (Least 

Significant Bit). Any binary number can be converted to its decimal equivalent 

simply by summing together the weights of the various positions in the binary 

number which contain a 1. To illustrate: 

 

 

 

 

 

Let’s try another example with greater number of bits. 

 

 

 

 

 

Example: find the decimal equivalent of the 0.1101? 

 As far as mixed numbers are concerned (number that have an integer and 

fractional part), the weights for a mixed number are: 

   

 

 

Quantity Binary No. Decimal No. 

None 0  0 

. 1  1 

.. 01  2 

… 11  3 

…. 100  4 

….. 101  5 

…… 110  6 

……. 111  7 

Table (1) 
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Hence: 0.1101(2) =0.8125(10) 

Example: convert binary 110.001 to a decimal number 

  

 

 

  

 

 

Decimal-to-Binary Conversion: 

 One way to convert a decimal number into its binary equivalent is to reverse 

the process described in the binary to decimal conversion paragraph. For instance, 

suppose you want to convert decimal 9 into the corresponding binary number. All 

you need to do is express 9 as a sum of power of 2, and then write 1’s and 0’s in 

the appropriate positions. 

 

         

  

 

As another example, 

 

25=16+8+1= 

 

  

 

 Amore popular way to convert decimal number to binary numbers is the 

(repeated division). This method requires repeatedly dividing the decimal number 

by 2 and writing down the reminders after each division until a quotient of 0 is 

obtained. Note that the binary result is obtained by writing the first reminder as the 

LSB and the last reminder as the MSB. Let us convert decimal 25 to its binary 

equivalent using the repeated division method. 
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As far as fractions are concerned, it is possible to multiply by 2 and record a carry 

in the integer position. As an example, convert 0.625 to binary fraction. 

 

By taking the carries in forward order, 

we get (0.101) which is the binary  

equivalent of 0.625 

 

Example: convert 21.6(10) to a binary number. 

Split 21.6 into an integer of 21 and a fraction of 0.6, and apply repeated division to 

each part. 

 

 

 

  

 

 

 

and 

2

25
=12 + Remainder 1 

2

12
=6 + Remainder   0 

2

6
=3 + Remainder    0 

2

3
=1 + Remainder    1 

2

1
=0 + Remainder    1 

25(10)= (1 1 0 0 1)2 

MSB 

LSB 

0.625×2=1.25 = 0.25   with a carry of  1 

0.25×2=0.5                  with a carry of  0 

0.5×2=1.0 = 0              with a carry of  1 

0.6×2=1.2 = 0.2   with a carry of  1 

0.2×2=0.4            with a carry of  0 

0.4×2=0.8            with a carry of  0 

0.8×2=1.6 = 0.6   with a carry of  1 

0.6×2=1.2 = 0.2   with a carry of  1 

This conversion of fractional part is an 

approximation value because we terminated the 

conversion after five bits. If more accuracy is 

needed, continue multiplying by 2 until you 

have as many digits as necessary. 
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Octal Number System: 

 The octal number system is very important in digital computer work. the 

octal number system has a base of 8, meaning it has eight possible digits: 

0,1,2,3,4,5,6,7. Thus, each digit of an octal number can have any value from 0 to 7. 

The digital positions in an octal number have weights as follows: 

 

 

 

 
 

 

Octal-to-Decimal Conversion: 

 An octal number can be easily converted to its decimal equivalent by 

multiplying each octal digit by its positional weight. For example: 

 

 

 

Example: convert 24.6(8) to its decimal equivalent. 

 

 

 hence: 21.6(10)= (1 0 1 0 1.1 0 0 1 1)2 

2

21
=10 + Remainder 1 

2

10
=5 + Remainder   0 

2

5
=2 + Remainder    1 

2

2
=1 + Remainder    0 

2

1
=0 + Remainder    1 MSB 

LSB 
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82 

 

 

81 

 

 

80 

 

 

8-1 

 

 

8-2 

 

 

8-3 

 

 

  etc. etc. 

 • Octal Point 

372(8)=3×82+7×81+2×80 

            =3×64+7×8+2×1=250(10) 

24.6(8)=2×81+4×80+6×8-1 

              =2×8+4×1+6×0.125=20.75(10) 
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Decimal-to-Octal Conversion: 

 A decimal integer can be converted to octal by using the same repeated 

division method that have been used in the decimal-to-binary conversion, but with 

a division factor of 8 instead of 2. An example is shown below: 

 

 

 

 

 

 

 

For decimal fractions, multiplying instead of dividing, writing the carry into the 

integers position. An example of this is to convert 0.23 into an octal fraction. 

 

 

 

 

 

The process is terminated after three places; if more accuracy were required, we 

continue multiplying to obtain more octal digit. 

 

Octal-to-Binary Conversion: 

 The primary advantage of the octal number system is the ease with which 

conversion can be made between binary and octal numbers. The conversion from 

octal to binary is performed by converting each octal digit to its 3-bit binary 

equivalent. The eight possible digits are converted as indicated in Table (2). 

 

Octal No. 0 1 2 3 4 5 6 7 

Binary Equivalent 000 001 010 011 100 101 110 111 

8

266
=33 + Remainder 2 

8

33
= 4    + Remainder  1 

8

4
= 0      + Remainder 4 

266(10)= 412(8) 

0.23×8=1.48 = 0.84   with a carry of  1 

0.84×8=6.72 = 0.72   with a carry of  6 

0.72×8=5.76 = 0.76   with a carry of  5 

Table (2) 
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For example, 472(8) is converted to its binary equivalent as follows:- 

 

 

 

 

Example: convert 34.562(8) to its binary equivalent. 

 

 

 

 

Binary-to-Octal Conversion: 

 Converting from binary integers to octal integers is done by grouping the 

binary bits into groups of three bits starting at the LSB. Then each group is 

converted to its octal equivalent. 

 

Example: convert 100111010(2) to octal system. 

 

 

 

 

 

Example: convert 11010110(2) to its octal equivalent. 

Sometimes the binary number will not have even groups of 3bits. For this 

case, extra 0’s can be added to the left of the MSB of the binary number to fill out 

the last group as shown below:  

 

 

 

 

 

 

4 7 2 

100 111 010 

472(8) = 100111010(2) 

3 4 
 

• 

011 100 101 

5 6 2 

110 010 
 

• 

34.562(8) = 011100.101110010(2) 

100    111    010 

4        7       2 

100111010(2) = 472(8)   

One added 

Zero     11    010    110 0 

3        2       6 

11010110(2) = 326(8)   
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Example: convert 1011.01101(2) to octal system. 

 

 

 

 

 

 

 

Hexadecimal Number System: 

 The hexadecimal system uses base 16. Thus, it has 16 possible digit 

symbols. It uses the digits 0 through 9 plus the letters (A,B,C,D,E and F) as the 16 

digit symbols. Table (3) shows the relationships among hexadecimal, decimal, and 

binary digits. 

 

Hexadecimal Decimal Binary 

0 0 0000 

1 1 0001 

2 2 0010 

3 3 0011 

4 4 0100 

5 5 0101 

6 6 0110 

7 7 0111 

8 8 1000 

9 9 1001 

A 10 1010 

B 11 1011 

C 12 1100 

D 13 1101 

E 14 1110 

F 15 1111 

 

 

 

Two added 

Zeros       1    011  •  011    01 0 0 

1       3    •    3        2 

0 One added 

Zero 
1011.01101(2) = 13.32(8)   

Table (3) 
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Hex-to-Decimal Conversion: 

 a hex number can be converted to its decimal equivalent by using the fact 

that each hex digit position has a weight that is a power of 16. the LSD has a 

weight of 1160 = , the next higher digit has a weight of 16161= , the next higher 

digit has a weight of 256162 = , and so on. The conversion is demonstrated in the 

examples below: 

 

 

 

 

Decimal-to-Hex Conversion: 

 Recall that we did decimal-to-binary conversion using repeated division by 

2, and decimal-to-octal conversion using repeated division by 8. Likewise, 

decimal-to-Hex conversion can be done using repeated division by 16. 

 

Example: convert 423(10) to hex. 

 

 

 

 

 

 

 

Example: convert 214(10) to hex. 

 

 

 

 

 

356(16)=3×162+5×161+6×160 

            =768+80+6=854(10) 

2AF(16)=2×162+10×161+15×160 

            =512+160+15=687(10) 

16

423
=26 + Remainder 7 

16

26
= 1    + Remainder 10 

16

1
= 0      + Remainder 1 

423(10)= 1A7(16) 

16

214
=13 + Remainder 6 

16

13
= 0    + Remainder 13 

214(10)= D6(16) 
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Hex-to-Binary Conversion: 

 Each Hex digit is converted to its 4-bit binary equivalent. This is illustrated 

below for 9F2(16). 

 

 

 

Binary-to-Hex Conversion: 

 This conversion is just the reverse of the process of Hex-to-Decimal 

conversion.  The binary number is grouped into groups of 4bits, and each group is 

converted to its equivalent hex digit as in the example below: 

 

 

 

 

Review Questions: 

1. What is the binary equivalent of decimal number 363? convert to octal and 

then to binary? 

2. What is the largest number that can be represented using 8 bits? 

3. What is the decimal equivalent of 1101011(2)? 

4. What is the next binary number following 10111(2) in the counting sequence? 

5. What is the weight of the MSB of a 16-Bit number? 

6. Convert 614(8) to decimal? 

7. Convert 146(10) to octal? 

8. Convert 24CE(16) to decimal? 

9. Convert 3117(10) to hex, then from hex to binary? 

10. Solve for x in the following equation: 1011.11(2) = x(10)? 

11. Solve for x in the following equation: 174.3(8) = x(10)? 

12. Solve for x in the following equation: 10949.8125(10) = x(2)? 

13. Solve for x in the following equation: 2C6B.F2(16) = x(2)? 

9 F 2 

1001 1111 0010 

9F2 (16) = 100111110010(2) 

101110100110(2) = BA6(16)   

1011    1010    0110 

B          A         6 
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Arithmetic Operation 
  

Addition of Binary Numbers: 

  The addition of two binary numbers is performed in exactly the same 

manner as the addition of decimal numbers. Only four cases can occur in adding 

the two binary digits (bits) in any position. They are: 

 

 

 

 

Examples:  

 

 

 

 

Subtraction of Binary Numbers (Using Direct Method): 

 The four basic rules for subtracting binary digits are: 

 

 

 

Examples: 

 

 

 

 

Subtraction of Binary Numbers (Using Complement Method): 

 The 1’s complement and the 2’s complement of a number are important 

because they permit the representation of negative numbers. The method of 2’s 

complement arithmetic is used in computer to handle negative numbers. 

❖ 1’s complement: the 1’s complement form of any binary number is obtained 

simply by changing each 0 in the number to a 1 and each 1 to a 0. In other 

word, change each bit to its complement. For example: 

0+0=0 

1+0=1 

0+1=1 

1+1=0     with carry 1 

1+1+1=1 with carry 1 

   011    (3) 

+ 110    (6) 

 1001    (9) 

   1001   (9) 

+ 1111  (15) 

 11000  (24) 

   11.011    (3.375)                  

+ 10.110    (2.750)                          

 110.001    (6.125) 

   1010  (10) 

+ 1101  (13) 

 10111  (23) 

0-0=0 

1-1=0 

1-0=1 

0-1=1     with borrow 1 

 

   11    (3) 

-  01    (1) 

   10    (2) 

   11    (3) 

- 10    (2) 

   01    (1) 

   101    (5) 

 - 011    (3) 

   010    (2) 

when 1 is borrowed, making 10 instead of 0. 

when 1 is borrowed, a 0 is left . 
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❖ 2’s complement: the 2’s complement form of a binary number is formed 

simply by taking the 1’s complement of the number and adding 1 to the least 

significant bit position. 

 

 

 

Example: find 2’s complement of 10110010. 

  

 

 

 

 

Example: find 11010(2) – 10000(2) using 1’s complement method (Case 1). 

 

 

 

 

 

 

Example: find 10000(2) – 11010(2) using 1’s complement method (Case 2). 

 

 

 

 

 

 

1 0 1 1 0 1        Binary No. 

0 1 0 0 1 0        1’s complement 

0 1 1 0 1 0        Binary No. 

1 0 0 1 0 1        1’s complement 

 

2’s complement = (1’s complement) +1 

1 0 1 1 0 0 1 0        binary number. 

0 1 0 0 1 1 0 1        1’s complement 

+                          1        adding 1 

0 1 0 0 1 1 1 0        2’s complement 

   11010 

+ 01111     1’s complement of 10000 

 101001 

+         1   

   01010   

As long as the carry appear, 

the number is positive and a 

carry must be added to the 

result. 

11010(2) – 10000(2)  = 01010(2)   

As long as no carry appear, the 

number is negative, then 1’s 

complementing of the final 

result in needed. 

10000(2) – 11010(2)  = - 01010(2)   

   10000 

+ 00101     1’s complement of 11010 

   10101 

                   

   

   01010      

1’s complement 
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Example: find 11010(2) – 10000(2) using 2’s complement method (Case 3). 

 

 

 

 

 

 

Example: find 10000(2) – 11010(2) using 2’s complement method (Case 4). 

 

 

 

 

 

 

 

 

Multiplication of Binary Numbers: 

 The numbers in a multiplication are the multiplicand, the multiplier, and the 

product. These are illustrated in the following decimal multiplication:- 

the multiplication rules for binary numbers are: 

0 × 0 = 0 

0 × 1 = 0 

1 × 0 = 0 

1 × 1 = 1 

 

Example: find the product of 100(2) and 010 (2). 

 

 

 

 

   11010 

+ 10000     2’s complement of 10000 

 101010 

As long as the carry appear, 

the number is positive and a 

carry must be discarded 

11010(2) – 10000(2)  = 01010(2)   

As long as no carry appear, the 

number is negative, then 2’s 

complementing of the final 

result in needed. 

10000(2) – 11010(2)  = - 01010(2)   

   10000 

+ 00110     2’s complement of 11010 

   10110 

                   

   

   01010      

2’s complement 

   8            

× 3           

 24           

multiplicand 

multiplier 

product 

                   100           (4)     

                × 010           (2) 

   000 

      1000   + 

                00000   + 

                01000           (8) 

100(2) – 010(2)  = 01000(2)   
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Division of Binary Numbers: 

 The numbers in a division are the dividend, the divisor, and the quotient. 

These are illustrated in the following standard. 

to illustrate, consider the following division examples: 

 

 

 

 

 

 

 

 

 

Addition of Hexadecimal Numbers: 

 Hex numbers are used extensively in machine-language computer 

programming and in conjunction with computer memories. When working in these 

areas, there will be situations where hex numbers have to be added or subtracted. 

The addition can be done in the same manner as decimal addition. Let’s add the 

hex numbers 58 and 24, 58 and 4B. 

 

 

 

 

Examples: add the following hexadecimal numbers. 

(a) 23(16)+16(16)                    (b) 58(16)+22(16)                   (c) DF(16)+AC(16) 

 

 

 

 

 

 

1001 

011 

0011 

0011 

0000 

0011 

11 

 

9 ÷ 3 = 3 
 

10 ÷ 4 = 2.5 

1010 

100 

00100 

    100 

    000 

0010.1 

100 

 

5 ÷ 2 = 2.5 

101 

10 

0010 

    10 

    00 

010.1 

10 

          58   

  + 24     

     7C     

          58   

  + 4B     

     A3     

 

1 Carry 

         3AF   

  + 23C    

     5EB     

    23     right column: 3(16)+6(16) = 3(10)+6(10) = 9(10) = 9(16) 

+ 16        left column: 2(16)+1(16) = 2(10)+1(10) = 3(10) = 3(16) 

   39 

    58     right column: 8(16)+2(16) = 8(10)+2(10) = 10(10) = A(16) 

+ 22       left column: 5(16)+2(16) = 5(10)+2(10) = 7(10) = 7(16) 

   7A 
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Subtraction of Hexadecimal Numbers (Using Direct Method): 

 Reverse operation of addition may be used as a direct way to subtract 

hexadecimal numbers as shown in the following examples: 

 

 

 

 

 

 

Subtraction of Hexadecimal Numbers (Using Complement Method): 

 Remember that hex numbers are just an efficient way to represent binary 

numbers. Thus we can subtract hex numbers using the same method we used for 

binary numbers. In order to find the complement of hex numbers, two ways are 

found 

• first way: 

 

 

 

• Second way: this procedure is quicker, subtract each hex digit from F, and 

then add 1. let’s  try this for the same hex number from the example above: 

 

 

 

 

 

    DF      right column: F(16)+C(16) = 15(10)+12(10) = 27(10)  

                                                                              = 27(10)-16(10) = 11(10) = B(16) with a carry of 1 

+ AC        left column: D(16)+A(16)+1(16)= 13(10)+10(10) +1(10)= 24(10)  

  18B                                                                                    = 24(10)-16(10) = 8(10) = 8(16) with a carry of 1 

   

    D3A         right column: A(16 )- 4(16) = 10(10) - 4(10) = 6(10) = 6(16) 

 -     F4      middle column: 3(16) - F(16)= 3(10) - 15(10) (need borrow) 

     C46                                                = 19(10) - 15(10)= 4(10) =4(16)                                                                                                                                      

                          left column: D(16) - 1(16) = C(16) 

    84       right column : 4(16 )- A(16) = 4(10) - 10(10) (need borrow) 

 - 2A                                          = 20(10) - 10(10)= 10(10) =A(16)                                                                                                                                      

    5A         left column : 8(16) - 2(16) - 1(16)= 5(16) 
                                     

                      

    7        3         A                    hex number                      

0111   0011   1010                  convert to binary 

1000   1100   0101                  1’s complement representation 

1000   1100   0110                  2’s complement representation 

   8         C        6                     conversion back to hex 

 F      F      F               

-7     -3    -A                        Subtract each digit from F 

 8      C      5 

                +1                        adding 1 

 8      C      6                         hex. Equivalent of 2’s comp. 
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Example: subtract 3A5(16) from 592(16). 

First, covert 3A5 to its 2’s complement form by using either method presented 

above. The result is C5B. Then add this to 592. 

 

 

 

 

Example: subtract the following hexadecimal numbers: 

(a) 84 – 2A                (b) C3 – 0B 

For branch (a): the 2’s complement of 2A = D6 

 

 

 

 

For branch (b): the 2’s complement of 0B = F5 

 

 

 

 

 

 

Multiplication of Hexadecimal Numbers: 

 The multiplication of hex numbers is well illustrated in the following 

example: 

 

 

 

 

 

 

 

 

 

 

 

         592   

  + C5B    

  1 1ED     
Discarded 

carry 

         84   

     + D6    

      1 5A          the difference is 5A(16)     Drop carry 

         C3   

     +  F5    

      1 B8          the difference is B8(16)     Drop carry 

    3A       right column : A(16 ) × F(16) = 10(10)  × 15(10) =150(10) = 96(16) 

×    F                                            = 6 with carry 9                                                                                                                                  

  366           left column : 3(16)  × F(16) + 9(16)= 3(10)  × 15(10) + 9(10) = 45(10) + 9(10) = 54(10) 

                                                                                                                                                                                                                                =36(16) 
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Review Questions: 

 

1. perform the following binary additions:  

(a)  1101+1010             (b)  10111+01101 

2. perform the following binary subtractions:  

(a)  11101- 0100             (b)  1001- 0111 

3. perform the indicated binary operation:  

(a)  110 ×111             (b)  1100 ÷ 011 

4. determine the 1’s complement of each binary number: 

(a)  11010                   (b)  001101 

5. determine the 2’s complement of each binary number: 

(a)  10111                   (b)  010001 

6. subtract the hexadecimal numbers: 

(a)  75(16 ) - 21(16)             (b)  94(16 )  - 5C(16) 

7. add the hexadecimal numbers directly: 

(a)  18(16 )  + 34(16)            (b)  3F(16 )  + 2A(16) 

8. multiply the following pairs of binary numbers: 

(a)  101.101 × 110.010                   Ans.:100011.00101 

(b)  0.1101 × 0.1011                       Ans.:0.10001111 

9. perform the following divisions: 

(a)  10110.1101 ÷ 1.1                    Ans.:1111.0011 

(b)  111111 ÷ 1001                        Ans.:111 
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Digital Codes 

 

1- Binary Coded Decimal (BCD): 

 When numbers, letters, or words are represented by a special group of 

symbols, this is called encoding, and the group of symbols is called a code. 

Probably one of the familiar codes is the Morse code, where series of dots and 

dashes represent letters of the alphabet. We have seen that decimal numbers can be 

represented by an equivalent binary number. The group of 0s and 1s in the binary 

number can be thought of as a code representing the decimal number. When a 

decimal number is represented by its equivalent binary number, we call it (straight 

binary coding). We have seen that conversion between decimal and binary can 

become long and complicated for large numbers. For this reason, a means of 

encoding decimal numbers that combines some features of both the decimal and 

binary systems is used in certain situations. 

 The 8421 code is a type of binary coded decimal (BCD) code. Binary coded 

decimal means that each decimal digit, 0 though 9, is represented by a binary code 

of 4 bits. The designation 8421 indicates the binary weights of the four bits 

(23,22,21,20). The ease of conversion between 8421 code numbers and the familiar 

decimal numbers is the main advantage of this code. All you have to remember are 

the ten binary combinations that represent the ten decimal digits as shown in Table 

(1). The 8421 code is the predominant BCD code, and when referring to BCD, it 

always means the 8421 code unless otherwise stated. 
 

   Table (1) 

 

 

 

To illustrate the BCD code, take a decimal number such as 874. Each digit is 

changed to its binary equivalent as follows: 

 

 

 

   0     1      2       3           4         5          6          7            8           9 

0000     0001     0010     0011     0100     0101     0110     0111     1000     1001       

1001     

Decimal digit 

BCD 

8 7 4 

1000 0111 0100 

 

Decimal 

 

BCD 
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It’s also important to understand that a BCD number is not the same as a straight 

binary number. a straight binary code takes the complete decimal number and 

represents it in binary; the BCD code converts each decimal digit to binary 

individually . To illustrate, take the number 137 and compare its straight binary 

and BCD codes. 

 

 

The BCD code requires 12 bits while the straight binary code requires only 8 

bits to represent 137. BCD is used in digital machines whenever decimal 

information is either applied as inputs or displayed as outputs. Digital voltmeter, 

frequency counters, and digital clocks, all use BCD because they display output 

information in decimal. BCD is not often used in modern high speed digital 

computers for the reason that the BCD code for a given decimal number requires 

more bits that the straight binary code and is therefore less efficient. This is 

important in digital computers because the number of places in memory where 

these bits can be stored is limited. 

 

Example: convert each of the following decimal numbers to BCD: 

        (a) 35               (b) 98             (c) 170            (d) 2469 

 

 

 

 

 

 

 

Example: convert each of the following BCD codes to decimal. 

                (a) 10000110                      (b) 1001010001110000  

 

 

  

 

 

 

137(10) = 10001001(2)                             (Binary) 

137(10) = 000100110111                          (BCD) 

3 5 

0011 0101 

9 

1001 

8 

1000 

1 

0001 

7 

0111 

0 

0000 

2 

0010 

4 

0100 

6 

0110 

9 

1001 

10000110                            1001010001110000 

8      6                                   9      4     7      0 
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2- Gray Code: 

 The gray code is un-weighted and is not an arithmetic code; that is, there are 

no specific weights assigned to the bit positions. The important feature of the Gray 

code is that it exhibits only a single bit change from one code number to the next. 

Table (2) is a listing of the four bit gray code for decimal numbers 0 through 15. 

Notice the single bit change between successive gray code numbers. For instance, 

in going from decimal 3 to decimal 4, the gray code changes from 0010 to 0110, 

while the binary code changes from 0011 to 0100, a change of three bits. The only 

bit change is in the third bit from the right in the gray code; the other remain the 

same. 

 

Table (2) 

Decimal Binary Gray Decimal Binary Gray 

0 0000 0000 8 1000 1100 

1 0001 0001 9 1001 1101 

2 0010 0011 10 1010 1111 

3 0011 0010 11 1011 1110 

4 0100 0110 12 1100 1010 

5 0101 0111 13 1101 1011 

6 0110 0101 14 1110 1001 

7 0111 0100 15 1111 1000 

 

Binary-to-Gray Conversion: 

 Conversion between binary code and Gray code is sometimes useful. in the 

conversion process, the following rules apply: 

❖ The most significant bit (left-most) in the gray code is the same as the 

corresponding MSB in binary number. 

❖ Going from left to right, add each adjacent pair of binary code bits to get 

the next gray code bit. Discard carry. 
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Example: convert the binary number 10110 to Gray code. 

Step 1: the left-most Gray code digit is the same as the left-most binary code bit. 

 

 

 

Step 2: add the left-most binary code bit to the adjacent one: 

 

 

 

 
 

Step 3: add the next adjacent pair: 

 

 

 

 

 

Step 4: add the next adjacent pair and discard the carry: 

 

 

 

 

 

Step 5: add the last adjacent pair: 

 

 

 

 

 

 

Hence the Gray Code is 11101 

 

 

Gray-to-Binary Conversion: 

 

To convert from Gray code to binary, a similar method is used, but there are 

some differences. The following rules apply: 

❖ The most significant bit (left-most) in the binary code is the same as the 

corresponding bit in the Gray code. 

10110       (Binary) 

 

1               (Gray) 

1 + 0 110                 (Binary) 

  

1    1                        (Gray) 

1  0 + 1 10               (Binary) 

 

1   1   1                    (Gray) 

1   0   1 + 1 0           (Binary) 

 

1   1   1    0              (Gray) 

1   0   1    1 + 0        (Binary) 

 

1   1   1    0    1        (Gray) 
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❖ Add each binary code bit generated to the gray code bit in the next 

adjacent positions. Discard carry. 

 

Example: convert the Gray code number 11011 to binary. 

Step 1: the left-most bits are the same. 

 

 

 

Step 2: add the last binary code bit just generated to the gray code bit in the next 

position. Discard the carry. 

 

 

 

Step 3: add the last binary code bit generated to the next Gray code bit. 

 

 

 

Step 4: add the last binary code bit generated to the next Gray code bit. 

 

 

 

Step 5: add the last binary code bit generated to the next Gray code bit. discard 

carry. 

 

 

 

 

Hence the final binary number is 10010 

 

11011                           (Gray) 

 

1                                   (Binary) 

1     1  011                    (Gray) 

   + 

1     0                            (Binary) 

1     1      0  11              (Gray) 

           + 

1     0      0                    (Binary) 

1     1      0      1   1       (Gray) 

                   + 

1     0      0      1            (Binary) 

1     1      0      1      1       (Gray) 

                           + 

1     0      0      1      0       (Binary) 
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Example:  (a) Convert the binary number 11000110 to Gray-code. 

                  (b) Convert the Gray-code 10101111 to binary. 

 

(a) Binary to Gray code:- 

 

 

 

 

 

(b) Gray code to Binary:- 

 

 

 

 

 

 

3- Excess-3 Code: 

 This is a digital code related to BCD that is derived by adding 3 to each 

decimal digit and then converting the result of that addition to 4-bit binary. This 

code is un-weighted. For instance, the excess-3 code for decimal 2 and 9 are: 

 

 

 

 

 

The excess-3 code for each decimal digit is found by the same procedure. the entire 

code is shown in Table (3). 

 

 

 

1 + 1 + 0 + 0 + 0 + 1 + 1 + 0 

 

 

      1     0    1    0     0    1    0    1 

1      0      1      0      1      1      1      1  

 

 

1      1      0      0      1      0      1      0   

    2 

 + 3 

    5               (0101) 

    9 

 + 3 

   12               (1100) 
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                    Table (3) 

Decimal BCD Excess-3 

0 0000 0011 

1 0001 0100 

2 0010 0101 

3 0011 0110 

4 0100 0111 

5 0101 1000 

6 0110 1001 

7 0111 1010 

8 1000 1011 

9 1001 1100 

 

Example:  convert each of the following decimal number to Excess-3 code: 

                  (a) 13          (b) 430 

First, add 3 to each digit in the decimal number, and then convert each resulting    

4-bit sum to its equivalent binary code. 

 

 

 

 

 

 

4- Alphanumeric Code: 

 In order to be very useful, a computer must be capable of handling non-

numeric information. In other words, a computer must be able to recognize codes 

that represent numbers, letters, and special characters. These codes are classified as 

alphanumeric codes. The most common alphanumeric code, known as the 

American Standard Code for Information Interchange (ASCII), is used by most 

minicomputer and microcomputer manufacturers.  

   1              3 

+ 3          + 3 

   4              6 

 

 

0100        0110   (Excess-3) 

 

   4              3            0 

+ 3          + 3          +3    

   7              6            3 

 

 

0111        0110       0011       (Excess-3) 
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The ASCII is a seven-bit code in which the decimal digits are represented by 

the 8421 BCD code preceded by 011. The letters of the alphabet and other symbols 

and instructions are represented by other code combinations, shown in Table (4). 

For instance, the letter A is represented by 1000001 (4116), the comma by 0101100 

(2C16) and the ETX (end of text) by 0000011 (0316). 

 

 

Table (4) 

LSBS 

MSBS 

000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 

0000 NUL DLE SP 0 @ P ` p 

0001 SOH DC1 ! 1 A Q a q 

0010 STX DC2 “ 2 B R b r 

0011 ETX DC3 # 3 C S c s 

0100 EOT DC4 $ 4 D T d t 

0101 ENQ NAK % 5 E U e u 

0110 ACK SYN & 6 F V f v 

0111 BEL ETB ‘ 7 G W g w 

1000 BS CAN ( 8 H X h x 

1001 HT EM ) 9 I Y i y 

1010 LF SUB * : J Z j z 

1011 VT EXC + ; K [ k { 

1100 FF FS , < L \ l  

1101 CR GS - = M ] m } 

1110 SO RS . > N  n ~ 

1111 SI US / ? O _ o DEL 
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Example:  determine the codes that are entered from the computer’s keyboard 

when the following basic program statement is typed in. also express each in 

hexadecimal notation. 

20 PRINT “A=”;X 

 

Character ASCII Hexadecimal 

2 0110010 32 

0 0110000 30 

Space 0100000 20 

P 1010000 50 

R 1010010 52 

I 1001001 49 

N 1001110 4E 

T 1010100 54 

Space 0100000 20 

“ 0100010 22 

A 1000001 41 

= 0111101 3D 

“ 0100010 22 

; 0111011 3B 

X 1011000 58 
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Review Questions: 

1. How many bits are required to represents the decimal numbers in the range 

from 0 to 999 using straight binary code? Using BCD code? 

2. What is the binary weight of each 1 in the following BCD numbers? 

(a) 0010             (b) 1000              (c) 0001               (d) 0100 

3. Convert the following binary numbers to Gray codes? 

(a) 1100             (b) 1010              (c) 11010 

4. Convert the following Gray codes to binary? 

(a) 1000             (b) 1010              (c) 11101 

5. Convert the following decimal numbers to Excess-3 code? 

(a) 3                   (b) 87                  (c) 349 

6. Convert decimal 928 to Excess-3? 
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1- Inverter (NOT Gate): 

 The inverter performs the operation called inversion or complementation. 

The purpose of the inverter is to change the one logic level to the opposite level. In 

terms of bits, it changes a 1 to 0 and a 0 to a 1. 
 

 

Inverter Truth Table 

Input ( ) Output ( ) 

0 1 

1 0 

 

 

2- AND Gate: 

 The AND Gate is one of the basic gates from which all logic functions are 

constructed. An AND gate can have two or more inputs and performs what is 

known as logical multiplication. 

 

 

 

AND Gate Truth Table 

 

 

 

 

 

 

 

The total number of possible combinations of binary inputs to a gate is 

determined by the following formula:  

 

Where N is the total possible combinations and n is the number of input variables. 

To illustrate, 

 

Inputs Output 

A B X 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Logic Symbol 

  

Logic Symbol 

A 

B 
X 
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For two input variables:  N=22 =4 

For three input variables:  N=23 =8 

For four input variables:  N=24 =16 

 

3- OR Gate: 

 The OR gate is one of the basic gates from which all logic functions are 

constructed. An OR gate can have two or more inputs and performs what is know 

as logical addition. 

 

OR Gate Truth Table 

 

 

 

 

 

 

 

 

4- NAND Gate: 

The NAND gate is a popular logic element because it can be used as a 

universal gate; that is; NAND gate can be used to perform the AND, OR, and 

Inverter operations, or any combination of these operations. The term NAND is a 

contraction of NOT-AND and implies an AND function with a complemented 

(Inverted) output. 

 

 

 

 

 

 

 

 
 

Inputs Output 

A B X 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Logic Symbol 

A 

B 
X 

A 

B 
X 

 A 

B 
X 
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NAND Gate Truth Table 

 

 

 

 

 

 

 

 

5- NOR Gate: 

 The NOR gate, like the NAND gate, is a very useful logic element because it 

can also be used as a universal gate; that is; NOR gate can be used to perform the 

AND, OR, and Inverter operations, or any combination of these operations. 

 

NOR Gate Truth Table 

 

 

 

 

 

 

 

 

The term NOR is contraction of NOT-OR and implies an OR function with an 

inverted output. 

 

 

 

 

 

 

 

Inputs Output 

A B X 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Inputs Output 

A B X 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Logic Symbol 

A 

B 
X 

Logic Symbol 

A 

B 
X 

A 

B 
X 

 A 

B 
X 
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6- Exclusive-OR Gate (XOR): 

 The Exclusive-OR is actually formed by a combination of other gates. 

 

XOR Gate Truth Table 

 

 

 

 

 

 

 

 

 

 

7- Exclusive-NOR Gate (XNOR): 

 The Exclusive-NOR is actually formed by a combination of other gates. 

 

XNOR Gate Truth Table 

 

 

 

 

 

 

 

 

 

 

Example: (a) Develop the truth table for a 3-input AND gate. 

                 (b) Determine the total number of possible input combinations for a     

5-input AND gate. 

For branch (a) there are eight possible input combinations for a 3-input AND gate. 

 

 

Inputs Output 

A B X 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Inputs Output 

A B X 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Logic Symbol 

A 

B 
X 

Logic Symbol 

A 

B 
X 
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Input Output 

A B C X 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 

For branch (b), N=25 =32. There are 32 possible combinations of input bits for a   

5-input AND gate. 

 

Example: for the two input waveforms, A and B, sketch the output waveform, 

showing its proper relation to the inputs. 

 

 

 

 

 

 

 

 

 

When either or both inputs are HIGH, the output is HIGH as shown by the output 

waveform X in the timing diagram. 

 

 

 

 

 

 

 

A 

B 

X 

A 

B 

X 
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Example: Sketch the output waveform for the 3-input NOR gate, showing the 

proper relation to the input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The output X is LOW when any input is HIGH as shown by the output waveform 

X in the timing diagram. 

 

Example: For the 4-input NOR gate operating as a negative-AND. determine the 

output relative to the inputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 

A 

B 

X 

A 

B 

C 

C 

X 

A 

B 

X 

A 
B 

C 

C 
D 

D 
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Boolean algebra: 

 Boolean algebra is the mathematics of digital systems. It is important that 

you understand is principles thoroughly because a basic knowledge of Boolean 

algebra is indispensable to the study and analysis of logic circuits. The Boolean 

expressions for the previously studied gates are as follows: 

NOT Gate: if input is A, the output is  

AND Gate: if inputs are A and B, the output is A.B 

OR Gate   : if inputs are A and B, the output is A+B 

NAND Gate: if inputs are A and B, the output is  

NOR Gate   : if inputs are A and B, the output is  

XOR Gate   : if inputs are A and B, the output is A + B 

XNOR Gate: if inputs are A and B, the output is A • B 

 
 

Laws of Boolean algebra: 

1. Commutative law:                   

2. Associative law:                      

3. Distributive law:                     
 

Rules for Boolean algebra: 

 Table (1) lists 12 basic rules that are useful in manipulating and simplifying 

Boolean expressions. 

           Table (1) 

1.  A+0=A 7.  A.A=A 

2.  A+1=1 8.  A. =0 

3.  A.0=0 9.  =A 

4.  A.1=A 10.  A+AB=A 

5.  A+A=A 11.  A+ B=A+B 

6.  A+ =1 12.  (A+B)(A+C)=A+BC 
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Example: Prove that A+AB=A.          

 

 

 

 

 

 

 

 

Example: Prove that A+ AB=A+B.      

     

A B BA  A+ BA  A+B 

0 0 0 0 0 

0 1 1 1 1 

1 0 0 1 1 

1 1 0 1 1 

 

 

DeMorgan’s Theorem: 

 Two of the most important theorems of Boolean algebra were contributed by 

a great mathematician named DeMorgan. DeMorgan’s theorems are extremely 

useful in simplifying expressions in which a product of sum of variables is 

inverted. The two theorems are: 

1- YXYX .=+                                                                

X Y YX +  YX .  

0 0 1 1 

0 1 0 0 

1 0 0 0 

1 1 0 0 

A B AB A+AB 

0 0 0 0 

0 1 0 0 

1 0 0 1 

1 1 1 1 

Equal 

AA

BAABA

==

+=+

1.

)1(
 

Equal 

BA

BAAA

BAAAABAA

BAABAA

BAABABAA

+=

++=

+++=

++=

++=+

))((

)(

)(

 

X 

Y 
YX .  

X 

Y 
YX +  

≡  
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2- YXYX +=.                                                                

X Y YX .  YX +  

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 0 0 

 

  

Example: Apply DeMorgan’s theorem to the expressions: WXYZ  

and ZYXW +++ . 

ZYXWZYXW

ZYXWWXYZ

=+++

+++=
 

 

Example: Apply DeMorgan’s theorem to each of the following expressions: 

  (a) DCBA )( ++     (b) EFDCBA ++  

DCBA

DCBADCBA

+=

+++=++

..

)()(
 

))()((

)()()(

FEDCBA

EFDCBAEFDCBA

+++=

=++
 

 

Simplification using Boolean algebra: 

 Many times in the application of Boolean algebra, we have to reduce a 

particular expression to its simplest form or change its form to a more convenient 

one to implement the expression most efficiently. The purpose of simplifying 

Boolean expression is to use the fewest gates possible to implement a given 

expression. 

 

 

X 

Y 
YX .  

X 

Y 

≡  

YX +  
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Example: Simplify the following expression: )()( CBBCBAABY ++++= . 

ACBBACAB

BCBACAB

BCBACABAB

BCBBACABABCBBCBAAB

+=++=

+++=

++++=

++++=++++ )()(

 

 

 

 

 

 

  

  

 

Example: Simplify the expression: 

CBBABCCABBCCAABBCCBABABC

CBACCBABC

CBACBACBAAABC

ABCCBACBACBABCA

++=++=++=++

+++

++++

++++

)()(1.

)(1.

)(
 

 

The Sum-of-Product (SOP) form: 

 When two or more product terms are summed by Boolean addition, the 

resulting expression is a sum of product (SOP). Some examples are: 

 

 

ACCBABA

DCBCDEABC

ABCAB

++

++

+

              

 

 

 

Y 

A 

B 

A 

B 

C 

B 

≡  A 

C 

B 
B+AC 

X=AB+BCD+AC 

A 

B 

B 

C 
D 

A 

C 
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The Product-of-Sum (POS) form: 

 When two or more sum terms are multiplied, the resulting expression is a 

product of sum (POS). Some examples are: 

 

 

))()((

))()((

))((

CACBABA

DCBEDCCBA

CBABA

++++

++++++

+++

 

 

 

Example: Convert each of the following expression to general SOP form. 

  (a) AB+B(CD+EF)   (b) CBA ++ )(  

(a): AB+B(CD+EF)=AB+BCD+BEF 

(b): CBCACBACBACBA +=+=+=++ )()()(  

 

Example: Convert the following expression into standard SOP form. 

  DCABBACBA ++  

DCABDCBADCBACDBADCBACDBADCABBACBAhence

DCBADCBADCBACDBA

DDCBADDCBACBACBACCBABA

DCBACDBADDCBACBA

+++++=++

+++=

+++=+=+=

+=+=

:

)()()(*

)(*

 

Example: Convert the following expression into standard POS form. 

  ))()(( DCBADCBCBA +++++++  

))()((

))(())()((:

))(()(*

))(()(*

DCBADCBADCBA

DCBADCBADCBADCBCBAhence

DCBADCBAAADCBDCB

DCBADCBADDCBACBA

+++++++++

++++++=+++++++

++++++=+++=++

++++++=+++=++

 

 

X= (A+B)(B+C+A)(A+C) 

A 

B 

B 
C 
D 

A 

C 
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Example: Determine if the circuit gives XOR, XNOR or neither in the output. 

 

GateXNORABBA

BABA

BABAX

≡+=

++=

+=

).()(

).).((

 

 

Example: Determine the Boolean expression for a three-input NOR gate followed 

by an inverter. 

The expression at the NOR output is )( CBA ++ , which is then fed through an 

inverter to produce: 

CBACBAX ++=++= )(  

 

Example: Simplify the expression DBADBAY += . 

BABADDBAY ==+= 1.)(  

Example: Simplify the expression BCDAACDX += . 

BCDACDBACDBAACDX +=+=+= )()(  

Example: Simplify the logic circuit shown in the Figure below. 

The expression for output Z is: 

ABBA

BBBABAAA

BABAZ

+=

+++=

++= ))((

 

If we compare the resulting circuit with the  

original one, we see that both circuits contain 

the same number of gates and connections. In  

this case, the simplification process produced 

an equivalent, but not simpler circuit. Also one 

could notice that the resulting output is equivalent  

to exclusive NOR gate. 

A 

B 

A 

B 

X 

A 

C 

B X=A+B+C 

A 

B 

Z 

A 

B 

Z 
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Example: Develop truth table for the expression ABCCBACBA ++ . 

There are three variables in the domain, so there are eight possible binary values of 

the variables as listed in the left columns of Table (2). 

 

   Table (2) 

A B C X 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 
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The Karnaugh Map (K-Map): 

 The Karnaugh map provides a systematic method for simplifying Boolean 

expression and, if properly used, will produce the simplest SOP or POS expression 

possible. The K-map, like a truth table, is a means for showing the relationship 

between logic inputs and the desired output. The K-map is an array of Cells in 

which each cell represents a binary value of the input variables. The cells are 

arranged in a way so that simplification of a given expression is simply a matter of 

properly grouping the cells. The number of cells in a Karnaugh map is equal to the 

total number of possible input variable combinations as is the number of rows in a 

truth table. For three variables, the number of cells is 23=8. For four variables, the 

number of cells is 24=16. 

Three examples of K-maps for two, three, and four variables, together with the 

corresponding truth tables are shown in Figrue below: 

 

                                                        

 

 

 

 

 

                                                        

 

 

 

 

 

 

 

 

A B X 

 0 0 1 

 0 1 0 

1 0 0 

1 1 1 

 B  B 

A  1 0 

A 0 1 

A B C X 

 0 0 0 1 

 0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 0 

 C  C 

BA  1 1 

BA  1 0 

AB 1 0 

BA  0 0 

BA  

AB  

ABBAX +=  

CAB  

CBA  

CBA  

CABCBA

CBACBAX

++

+=
 

CBA  
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 Karnaugh Map SOP Minimization: 

 As stated in the last section, the Karnaugh map is used for simplifying 

Boolean expressions to their minimum form. A minimized SOP expression 

contains the fewest possible terms with the fewest possible variables per term. 

Generally, a minimum SOP expression can be implemented with fewer logic gates 

than a standard expression and this is the basic purpose in the simplification 

process. 

 

A B C D X 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 1 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 0 

1 1 0 1 1 

1 1 1 0 0 

1 1 1 1 1 

 DC  DC  CD DC  

BA  0 1 0 0 

BA  0 1 0 0 

AB 0 1 1 0 

BA  0 0 0 0 

ABCD  

DCBA  

DCBA  

ABCDDCAB

DCBADCBAX

++

+=
 

DCAB  
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Example: Map the following SOP expression on a Karnaugh map: 

  ABCCABCBACBA +++  

 

ABC

CAB

CBA

CBA

 

 

 

Example: Map the following SOP expression on a Karnaugh map: 

  CABBAA ++  

 

CAB

BA

A

 

 

Looping: 

 The expression for output X can be simplified by properly combining these 

squares in the K-map which contains 1’s. The process for combining these 1’s is 

called Looping. Looping a pair of adjacent 1’s in the K-map eliminates the 

variable that appears in complemented and un-complemented form as shown in the 

examples below:-  

 

 

 

 

 C  C 

BA   1 

BA  1  

AB 1 1 

BA    

 C  C 

BA  1 1 

BA  1  

AB 1 1 

BA  1 1 

001 

010 

110 

111 

000 

001 

010 

BCA

CBA

CBA

CBA

 

CBA

CBA
 

011 

100 

101 

CAB  110 
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CB

CABCBAX

=

+=
 

BA

BCACBAX

=

+=
 

CB

CBACBAX

=

+=
 

DBACBA

DCBADCBADCBACDBAX

+=

+++=
 

CBA  

DBA  

CX =  ABX =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The K-map may contain a group of four 1’s that are adjacent to each other. 

This group is called a quad. The simplification of such groups is shown in the 

examples below: 

 

 

 

 

 

 

 

 C  C 

BA  0 0 

BA  1 0 

AB 1 0 

BA  0 0 

 C  C 

BA  0 0 

BA  1 1 

AB 0 0 

BA  0 0 

 C  C 

BA  1 0 

BA  0 0 

AB 0 0 

BA  1 0 

 DC  DC  CD DC  

BA  0 0 1 1 

BA  0 0 0 0 

AB 0 0 0 0 

BA  1 0 0 1 

 C  C 

BA  0 1 

BA  0 1 

AB 0 1 

BA  0 1 

 DC  DC  CD DC  

BA  0 0 0 0 

BA  0 0 0 0 

AB 1 1 1 1 

BA  0 0 0 0 
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BDX =  DAX =  

CABABC

ABCCABABCX

CABABCABBut

ABCABX

+=

++=

+=

+=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Simplify the following equation using Boolean algebra and Karnaugh 

map: )).(.( CBBABX ++=  

 

1- Using Boolean algebra                   2- Using Karnaugh map 

AB

CAB

ABCAB

CBAB

CBAB

CBBABX

=

+=

+=

+=

++=

++=

)1(

)(

)).(0(

)).(.(

                                 

 

 DC  DC  CD DC  

BA  0 0 0 0 

BA  0 1 1 0 

AB 0 1 1 0 

BA  0 0 0 0 

 DC  DC  CD DC  

BA  0 0 0 0 

BA  0 0 0 0 

AB 1 0 0 1 

BA  1 0 0 1 

 DC  DC  CD DC  

BA  1 0 0 1 

BA  0 0 0 0 

AB 0 0 0 0 

BA  1 0 0 1 

 C  C 

BA    

BA    

AB 1 1 

BA    

DBX =  
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B  

CA  

Example: Use a Karnaugh map to minimize the SOP expression:- 

  CBACBACBABCACBA ++++  

 

CABX +=  

 

 

 

 

 

Example: Use a Karnaugh map to minimize the SOP expression:- 

DCBADABCDBCADCBACDBACDBADCABDCBADCB ++++++++ . 

The first term DCB  must be expanded into DCBAandDCBA  to get a 

standard SOP expression which is then mapped and the cells are grouped as shown 

in figure below: 

 

CBDX +=  

 

 

 

 

 

 

 

Don’t Care Condition: 

 Some logic circuit can be designed so that there are certain input conditions 

for which there are no specified output levels, usually because these conditions will 

never occur. In other words, there will be certain combinations of input levels 

where we “don’t care” whether the output is HIGH or LOW. This is illustrated in 

the truth table below:- 

 C  C 

BA  1 1 

BA   1 

AB   

BA  1 1 

 DC  DC  CD DC  

BA  1  1 1 

BA  1   1 

AB 1   1 

BA  1  1 1 

D  CB  
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AZ=  

Don’t Care 

 

                                                        

 

 

 

 

 

 

 

 

 

Whenever “don’t care” conditions occur, we have to decide which ones to change 

to 0 and which to 1 to produce the best K-map looping (i.e. the simplest 

expression). 

 

Karnaugh Map POS Minimization 

 In this section, we will focus on POS expressions instead of SOP. The 

approaches are much the same except that with POS expressions, 0’s representing 

the standard sum terms are placed on the karnaugh map instead of 1’s. 

 

Example: Map the following POS expression on a karnaugh map.  

( )( )( )( )( )DCBADCBADCBADCBADCBA +++++++++++++++  

          1100                  1011                  0010                   1111                 0011 

 

 

 

 

 

 

A B C Z 

 0 0 0 0 

 0 0 1 0 

0 1 0 0 

0 1 1 x 

1 0 0 x 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 C  C 

BA  0 0 

BA  0 x 

AB 1 1 

BA  x 1 

 C  C 

BA  0 0 

BA  0 0 

AB 1 1 

BA  1 1 

 DC  DC  CD DC  

BA    0 0 

BA      

AB 0  0  

BA    0  

AB 
CD 

00 

01 

11 

10 

00 01 11 10 

DCBA +++  

DCBA +++  
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Example: Use a karnaugh map to minimize the POS expression: 

( )( )( )( )( )CBACBACBACBACBA ++++++++++  

 

)( CBAOut +=  

 

keep in mind that this minimum POS expression 

is equivalent to the original standard POS expression 

grouping the 1’s  as shown yields a SOP expression 

that is equivalent to grouping  the 0’s . 

 

 

 

 

 C  C 

BA  0 0 

BA  0 0 

AB 0 1 

BA  1 1 

A  

)( CBABAAC +=+  

AC  
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Basic Adders: 

 Adders are important not only in computers, but in many types of digital 

systems in which numerical data are processed. An understanding of the basic 

adder operation is fundamental to the study of digital systems. In this section, the 

half-adder and the full-adder are introduced. 

1- The Half-Adder (H.A): 

Recall the basic rules for binary addition as stated in the previous lectures:   

 

 

 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 

 

 

 

 

 

 

2- The Full-Adder(F.A): 

The second basic category of adder is the Full-adder. The full-adder accepts 

three inputs including an input carry and generates a Sum output and output 

carry. 

 

These operations are performed by a logic circuit called a 

half-adder. The half-adder accepts two binary digits on its 

inputs and produces two binary digits on its outputs, a Sum bit 

and a Carry bit. 

A                 S 

 

H.A 
 

B             Cout 

Sum 

Carry 

 

Carry 

Sum 

A 

B 
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From the truth table:- 

 

 

 

 

 

 

 

 

 

 

 

A B Cin Cout S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

A                 S 

B 

F.A 
 

Cin           Cout 

Sum 

Carry out Carry in 

Carry (Cout) 

Sum (S) 

A 

B 

Cin 
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Example: Arrange two half-adders to form full-adder. 

 

 

 

 

 

 

 

 

Parallel Binary Adders: 

 Adders that are available in integrated circuits form are parallel binary 

adders. As you saw in the previous section, a single full-adder is capable of adding 

two 1-bit numbers and an input carry. To add binary numbers with more than one 

bit, additional full-adders must be employed. To implement the addition of binary 

numbers, a full-adder is required for each bit in the numbers. So, for 2-bit numbers, 

two adders are needed; for 4-bit numbers, four adders are used; and so on. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

  
 

H.A 

 
 

H.A 

A 

B 

Sum (S) 

Input Carry 

 Carry (Cout) 

       A2A1 

                   + B2B1  
  

         Σ3 Σ2 Σ1 
 

 
 

 

F.A 
 

F.A 

A1 B1 A2 B2 

Σ1 (LSB) Σ2   (MSB)Σ3 
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Half- and Full- Subtractors: 

 Instead of using complements to subtract, circuits can subtract binary 

numbers directly.  

1- The Half-Subtractor (H.S): 

Recall the basic rules for binary subtraction as stated in the previous 

lectures:   

 

 

A B Borrow ( ) Difference (D) 

0 0 0 0 

0 1 1 1 

1 0 0 1 

1 1 0 0 

 

 

 

 

 

 

2- The Full- Subtractor (F.S): 

The half-subtractor handles only two bits at a time and can be used for the 

least significant column of a subtraction problem. To take care of a higher-

order column, we need a full-subtractor.  

The full-subtractor uses two half-subtractors 

And an OR gate as shown in figure below: 

 

 

These operations are performed by a logic circuit 

called a half-subtractor. The half-subtractor accepts 

two binary digits on its inputs and produces two 

binary digits on its outputs, a Difference bit and a 

Borrow bit. 

A                D 

 

H.S 
 

B             β 

Difference 

Borrow 

 

Borrow 

Difference 
A 

B 

β 

A                  

B 

F.S  

          

D 

Input Borrow 
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Half- and Full- subtractors are analogous to half- and full- adders; by cascading 

half- and full- subtractors as shown in figure below, we have a system that directly 

subtract . 

 

 

 

 

 

 

 

1’s Complement Subtractors: 

 The following figure shows a circuit that subtracts B3B2B1B0 from 

A3A2A1A0.The first four inverters complement each B bit to get , the 1’s 

complement of B3B2B1B0. The full-adders add A and B and the end-around carry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Borrow 

 Borrow 

 Diff. 

 
 

H.S 
A 

B 

Difference (D) Input Borrow 

Borrow (β) 

 
 

H.S 

 

H.S 
 

F.S 
 

F.S 
 

F.S 

A1 

B1 

A2 

B2 

A3 

B3 

A4 

B4 

y1 y2 y3 y4 

 

F.A 
 

F.A 
 

F.A 
 

F.A 

A0 

B0 

A1 

B1 

A2 

B2 

A3 

B3 

y0 y1 y2 y3 

End-around 

Carry 

This stage is used to do 
complement only when 

the out carry is 0 

Out Carry 
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2’s Complement Subtractors: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2’s Complement Adders/ Subtractors: 

 The following figure shows an adder/subtractor based on the 2’s 

complement. When SUB is Low, the B bits pass through the controlled inverter to 

the full-adder. Therefore; the full adder produces the sum of A&B. When SUB is 

High, the Bits are inverted before reaching the full-adder. Also, a High SUB adds a 

1 to the first full-adders. This addition of 1 forms the 2’s complement of B. 

therefore; the output of the full-adders is the difference of A&B. 

 

 

 

 

 

 

 

 

F.A 
 

F.A 
 

F.A 

 

 

F.A 

A0 

B0 

A1 

B1 

A2 

B2 

A3 

B3 

y0 y1 y2 y3 

+1 

This stage is used to do 

2’s complement only 

when the out carry is 0 

Out Carry 

 

H.A 
 

H.A 
 

H.A 
 

F.A 

A0 A1 A2 A3 

y0 y1 y2 y3 

Out Carry 

 

F.A 
 

F.A 
 

F.A 
 

F.A 

SUB 

B0 B1 B2 B3 
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Decoders: 

 The basic function of a decoder is to detect the presence of a specified 

combination of bits (code) on its inputs and to indicate the presence of that code by 

a specified output level. In its general form, a decoder has n lines to handle n bits 

and from one to 2n output lines to indicate the presence of one or more n-bit 

combination. 

Example: A decoder for binary number 1001. 

 

 

 

 

Example: Determine the logic required to decode the binary number 1011 by 

producing a HIGH level on the output. 

The decoding function can be formed by complementing only the variables that 

appear as 0 in the binary number, as follows: 

 

 

 

Four bit binary Decoders: 

 In order to decode all possible combinations of four bits, sixteen decoding 

gates are required (24=16). This type of decoder is commonly called a 4-line-to-16-

line decoder because there are four inputs and sixteen outputs or a 1-of-16 decoder 

because for any given code on the inputs, one of the sixteen outputs is activated. 

 

 

 

 

 

1 

1 

1 

0 

0 

HIGH 

Active high 

output 

0 

1 

1 

0 

0 

LOW 

Active low 

output 

X 

A0 

A3 

A1 

A2 

Interconnections 

 

 

 Active 

 HIGH 

 Output 

 

 4×16 

 

0 

1 

2 

15 

Pebble is added for each AND 

gate to produce active low output 
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Example: Design a 5-input to 32 decoder using 4 of (3×8) decoder and one of 

(2×4) decoder. 

 

 

 

 

 

 

 

 

 

 

Decimal 
Binary Input Output 

A3 A2 A1 A0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

5 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

6 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

7 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

8 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

9 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

10 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

11 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

12 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

13 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

14 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

15 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

 

3×8 

C 
D 

E 
d0 – d7 

 

 

3×8 

C 
D 

E 
d8 – d15 

 

 

3×8 

C 
D 

E 
d16 – d23 

 

 

3×8 

C 
D 

E 
d24 – d31 

 

 

2×4 
A 

B 

 
 

Decoder 

3×8 

A 

B 

C 

do 

d31 

D 

E 
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Example: Design the following Boolean function with a (3×8) decoder and OR 

gate:  

 

 

 

 

 

Example: Design a full adder cct. using a decoder of (3×8) and two OR gates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Encoder: 

 An encoder is a combinational logic circuit that essentially performs a 

“reverse” decoder function. An encoder accepts an active level on one of its inputs 

representing a digit such as a decimal or octal digit, and converts it to a coded 

output, such as BCD or binary. Encoders can also be desired to encode various 

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 1 

Ci A B S Co 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

b7 

b5 

b4 

b3 

b2 

b0 
 

 

Decoder 

3×8 

A 

B 

C 
F 

 

d7 

d0 
 

 

Decoder 

3×8 

Ci 

B 

A 
S 

C0 
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symbols and alphabetic characters. The process of converting from familiar 

symbols or numbers to a coded format is called encoding. 

Decimal to BCD Encoder: 

 This type of encoder has ten inputs – one for each decimal digit – and four 

outputs corresponding to the BCD code as shown in figure below. This is a basic 

10-line-to-4-line encoder. 

 

 

 

 

 

 

 

 

 

  

 

Example: )4×2) encoder: where 4= No. of input, 2= No. of output. 

 

  

 

 

 
 

 

 

 

 

 

 

 

 
 

Decimal D C B A 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

d0 d1 d2 d3 X Y 

1 0 0 0 0 0 

0 1 0 0 0 1 

0 0 1 0 1 0 

0 0 0 1 1 1 

0 

1 

2            A 

3            B 

              C 

              D 

 

9 

Decimal 

input 

BCD 

output 

The expressions for output in term of decimal are: 

 

 

 

Encoder 

4×2 

do 

d1 

d3 

X 

Y 

 

d2 

d2 

d3 

d1 

X 

Y 
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Multiplexers (Data Selectors): 

A multiplexer (MUX) is a device that allows digital information from 

several sources to be routed onto a single line for transmission over that line to a 

common destination. The basic multiplexer has several data-input lines and a 

single output line. It is also has data-select inputs, which permit digital data on any 

one of the inputs to be switched to the output line. Multiplexers are also known as 

data selectors. 

 

 

 

 

 

 

 

 

 

Now let’s look at the logic circuitry required to perform this multiplexing 

operation. The data output is equal to the state of the selected data input. Therefore, 

a logical expression for the output in terms of data input and the selected input may 

be derived. 

 

  (Output equal D0 only when S1=0 and S0=0) 

  (Output equal D1 only when S1=0 and S0=1) 

  (Output equal D2 only when S1=1 and S0=0) 

  (Output equal D3 only when S1=1 and S0=1) 

 

When these terms are ORed, the total expression for the data output is: 

 

 

 

S0 S1 Input selected 

0 0 D0 

0 1 D1 

1 0 D2 

1 1 D3 

Data 

select 

Data 

input

s 

S0 

D0 

D1 

D2 

D3 

 

MUX 

4-input 

S1 

Y data    

output 
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Example: Design the following boolean function using (4×1) MUX. 

. (A, B are used as a selector switches). 

    

 

 

 

 

 

 

 

 

A B C F 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 

 I0 I1 I2 I3 

 0 2 4 6 

C 1 3 5 7 

 C C C  

S0 

S1 

D0 

D1 

D2 

D3 

Y 

A 

C 

C 

C 

 

 

MUX 

4-input 

B 

F 

F=C 

F=  

AB=00 results in F=C 

AB=01 results in F=C 

AB=10 results in F=C 

AB=11 results in F=  
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Example: Design the following boolean function using (4×1) MUX. 

∑ )6,5,3,1(),,(
m

CBAF = . (B, C are used as a selector switches). 

 

 

 

 

 

Example: Design a (16×1) MUX using 2 of (8×1) MUX and one of (2×1) MUX. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 I0 I1 I2 I3 

A  0 1 2 3 

A 4 5 6 7 

 0 1 A A  
B 

0 

1 

A 

A  

 

MUX 

4-input 

C 

F 

A 

I0  

MUX 

8×1 

B O/P 
C 

I7 

A 

I8  

MUX 

8×1 

B C 

I15 

 

MUX 

2×1 

D 
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Logic Circuits: 

The digital cct. considered thus for have been combinational, i.e., the outputs 

at any instant of time are entirely dependant upon the inputs presents at that time. 

Although every digital system likely to have combinational circuits, most systems 

encountered in practice also includes memory elements, which require the system 

be described in terms of sequential logic. 

 

 

 

 

The sequential logic cct. use combinational gates and F-F cct. in their 

design. 

Latches: 

The latches are a type of bi-stable storage device that in normally places in a 

category separate from that of flip-flops. Latches are basically similar to flip-flops 

because they are bi-stable devices that can reside in either of two states by virtue of 

feed back arrangement, in which the outputs are connected back to the opposite 

inputs. The main difference between latches and flip-flops is method used for 

changing their state. 

S-R Latch (Basic F/F) 

 

 

 

 

 

 

 

 

 

S R Qn Qn+1 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 X 

1 1 1 X 

 RS  RS  RS  SR  

Q  0 0 x 1 

Q  1 0 x 1 

 

Combinational 

cct 

 

Memory  

Element 

Output 

Input 

S 

R 

 

S-R 

F-F 

Q

S 
Q  

If S and R =0 

Qn=Qn+1  (no change) 

 
S=0, R=1 

Qn+1  (Reset) 

 

S=0, R=0 

Qn+1  (Set) 
 

S=1, R=1 

Qn+1  (Undefiend) 
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nnn

nnn

nn

QRSQQ

QRSQQ

QRSQ

+==

+==

+=

+

+

+

1

1

1

 

Using (NOR) gates: 

 

 

 

 

Using (NAND) gates: 

 

 

 

Example: RS,  waveforms in figure below applied to input of S-R latch, 

determine the waveform of Q. assume that Q is initially low. 

 

 

 

 

 

Gated S-R Latch: 

A gated latch requires an enable inputs (En). The logic diagram and logic 

symbol for gated S-R latch are shown in following figure. The S and R inputs 

control the state to which the latch will go when high level is applied to En input. 

The latch will not change until the En input is high, but as long as it remains high, 

the output is determined by  

the state of S and R inputs. 

 

 

RQS

QRS

QRSQ

n

n

nn

++=

+=

+=+1

n

n

nn

QRS

QRS

QRSQ

.

1

=

+=

+=+

R

R 

S

S 

Q

Q 

Q

R 

S 

R 

 

 

S-R 

F-F 

Q

 
Q  

nE

R 

Logic Symbol 

R

R 

S

S Q

Q 

Q

R 

nE

R 

Logic Diagram 

R

R 

S

S 
Q

Q 

Q

R 
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Example: Determine the  Q waveform if input shown in following figure are 

applied to a gated S-R latch that is initially RESET. 

 

 

 

 

 

 

Edge-triggered Flip-Flops: 

 Flip-Flops are synchronous bi-stable devices. In this case the term 

synchronous means that the output changes state only at specified point on a 

triggering input called Clock (designated C as a control input); that is, changes in 

output occur in synchronization with clock. 

 

1. S-R Edge triggered Flip-Flop: 
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Example: Determine Q and Q  output waveform of Flip-Flops in the figure below. 

Assume that the positive edge triggered F/F is initially RESET. 

 

 

 

 

 

 

 

 

 

 

 

 

2. J-K  Flip-Flop: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Find the output Q for the following input waveforms, assuming negative 

edge triggered J-K flip-flop. 

 

 

 

|J K Qn Qn+1 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

 KJ  KJ  KJ  JK  

Q    1 1 

Q  1   1 

S 

R 

 

 

S-R 

F-F 

Q  

Q  

C 

  

(no change) 
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C 
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3. Delay Flip-Flop (D- Flip/Flop): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Find the output Q for the following input waveforms, assuming positive 

edge triggered D- flip/flop. 

 

 

 

 

 
4. |Toggle Flip-Flop (T- Flip/Flop): 
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C 

Symbol Diagram 

D  

Q

Q 

Q

R 

kc /
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Master-Slave Flip-Flops: 

Another class of F/Fs is the master-slave. Although this type of F/Fs has 

largely been replaced by the edge-triggered devices, a limited selection is still 

available from Ic manufacturer. There are two basic types of Master-Slave F/F:- 

• Pulse triggered: does not allow data changed while clock active. 

• Data-look out: has no restriction. 

In both types data are entered into F/Fs on the leading edge of the clock 

pulse, but the output does not reflect the input state until trailing edge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Asynchronous inputs: 

The flip-flops discussed before S-R, D, J-K, T inputs are called synchronous 

inputs because data on these inputs are transferred to the flip-flop output only on 

triggering edge of the clock pulse. That is, the data are transferred synchronously 

with the clock. Most integrated circuits flip-flops also have asynchronous inputs. 

These inputs are affecting the state of the flip-flop independent of the clock. They 

are normally labeled Preset (PRE) and Clear (CLR) or direct set (SD) and direct 

reset (RD) by some manufacturers. 

• Flip Flop without pebble 

changes output on leading edge 

of positive going clock pulse. 

• Flip Flop with pebble changes 

output on trailing edge of 

positive going clock pulse. 
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• An active level on the preset input will SET the flip-flop. 

• An active level on the clear input will RESET the flip-flop. 

 

Example:  

 

 

 

 

 

 

 

 

 

 

Conversion between flip-flops: 

 

 

 

 

 

 

 

 

  

 

 

Example: Design a D- flip/flop using S-R flip/flop? 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qn Qn+1 
D T S        R J        K 

0 0 0 0 0          X 0          X 

0 1 1 1 1           0 1          X 
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1 1 1 0 X          0 X          0 

D Qn Qn+1 S        R 

0 0 0 0          X 

0 1 0 0           1 

1 0 1 1           0 

1 1 1 X          0 

 D  D  

nQ  0 1 

nQ  0 x 

 D  D  

nQ  x 0 

nQ  1 0 

DS =  DR =  

D

S 
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J-K 
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Example: Design a T- flip/flop using J-K flip/flop? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Example: Find the output Q for the following input waveforms using the circuit 

below?  

 

 

 

 

 

 

 

 

 

 

 

 

Propagation Delay Times: 

A propagation delay is an interval of time required after an inputs signal has 

been applied for the resulting output change to occur. Several categories of 

propagation delay are important in the operation of F/F. 

1. Propagation tPLH as measured from the triggering edge of the clock pulse to 

the Low-to-High transition of output. 
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2. Propagation delay tPHL as measured from the triggering edge of the clock 

pulse to the High-to-Low transition of output. 

 

 

 

 

 

3. Propagation delay tPLH as measured from the preset input to the Low-to-High 

transition of output. 

 

 

 

 

 

4. Propagation delay tPHL as measured from the clear input to the High-to-Low 

transition of the output. 

 

 

 

 

 

 

Set up Time: 

The set up time (ts) is the minimum interval required for the logic levels to 

be maintained constantly on the inputs (J & K) or (S & R) or D prior to the 

triggering edge of the clock pulse in order the levels to be reliably clocked into the 

F/F. This is illustrated in the figure below. 
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Hold Time: 

The hold time (th) is the minimum interval required for the logic levels to 

remain on the input after the triggering edge of the clock pulse in order the levels 

to be reliably clocked into the F/F. This is illustrated in the figure below for D flip-

flop. 
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Asynchronous Counter: 

The term asynchronous refers to events that do not have a fixed time 

relationship with each other and, generally, do not occur at the same time. An 

asynchronous counter is one in which the flip-flop within the counter do not 

change states at exactly the same time because they do not have a common clock 

pulse. 

 

• A 2-bits Asynchronous Binary Counter: 

 

 

 

 
 

 

 

 

 

 

 

 

 

• A 3-bits Asynchronous Binary Counter: 
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Example: A 4-bit asynchronous counter as shown in figure below. Each F/F is a 

negative edge triggered. Draw the timing diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Asynchronous Decade Counter: 
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Example: Show how an asynchronous counter can be implemented having a 

modulus of twelve with a straight binary sequence from 0000 through 1011. 
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