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Lecture 1

What is Calculus?

“advanced algebra and geometry”:
setting up Mathematics as a formal language

o fundamental: real numbers

@ study of functions of real variables

@ geometric view: graph of a function
@ continuity properties

@ slope « derivative
@ area < integral

@ many techniques, based on algebraic manipulations
@ many applications in all branches of modern society
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Lecture 1

Real numbers and the real line

think of the real numbers, e.g., as all decimals

examples: —3 = —0.7500... ; 1=0333... ; V2=14142...
The real numbers R can be represented as points on the real line:

1 : LI 1 1 1 1 1 ::
-3 -2 134 QU3 V2 3T 4

@ three fundamental properties of real numbers
@ algebraic: formalisation of rules of calculation (addition, subtraction,
multiplication, division)
example: 2(3+5)=2-3+2-5=6+10=16
@ order: inequalities (geometric picture: see the real line!l)
example: -3 <1 = -1<3
@ completeness: there are “no gaps” on the real line

20f12



Lecture 1

Subsets of the real numbers R

3. Completeness property can be understood by the following
construction of the real numbers: (! using set notation !)

Start with “counting numbers” 1,2, 3, ...
e N=1{1,2,3,4,...} natural numbers
— can we solve a 4+ x = b for x?
e Z={...,—2,-1,0,1,2,...} integers
— can we solve ax = b for x?
= {§|p, g € Z, q # 0} rational numbers

— can we solve x2 = 2 for x?

o R real numbers
example: positive solution to the equation x? = 2 is /2
This is an irrational number whose decimal representation is not
eventually repeating: /2 = 1.414 ... Another example is

m=3.141 . . . which is a Transcendental number
30f12



Lecture 1

Q has “holes”

In fact, one has to "prove” this:

x2 =2 has no solution x € Q

The real numbers R are complete in the sense that they correspond to all
points on the real line, i.e., there are no “holes” or “gaps”, whereas the
rationals have "holes” (namely the irrationals) and

= NCZCQCR

40f 12



Lecture 1

Intervals

Definition
A subset of the real line is called an interval if it contains at least two
numbers and all the real numbers between any two of its elements.

examples:

@ x > —2 defines an infinite interval, geometrically, it corresponds to a
ray on the real line

@ 3 < x < 6 defines a finite interval, geometrically, it corresponds to a
line segment on the real line

So we can distinguish between two basic types of intervals — let's further
classify:

50f12



Types of Intervals

Lecture 1

TABLE 1.1 Types of intervals

Notation
Finite: (a, b)

[a, ]

[a, b)

(a, b]
Infinite:  (a, o)

[a, 00)

(—00,b)

(=00, 5]

(=00, )

Set description
{x|a <x < b}
{x|la = x = b}
{xla = x < b}
{x|]a <x=b}
{x|x > a}
{x|x = a}
{x|x < b}
{x|x = b}

R (set of all real
numbers)

Type Picture
Open
a b
Closed
a b
Half-open N
a b
Half-open
a b
Open
a
Closed
a
o §
pen - >
Closed -~
b
Both open -

and closed




Lecture 1

Finding intervals of numbers

Solve inequalities to find intervals of x € R:
(a) 2x—1 < x+3
2x < x+4 solution sets on the real line:

x < 4 el 5 x
[\ 4
(a)

(b) —% < 2x+1
—-x < 6x+3 ‘5‘: 0 I

3<x (b)
7
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Lecture 1

Absolute Value

Definition

The absolute value (or modulus) of a real number x is

Ix| = X x>0
71 =x x<0

geometrically, |x| is the distance between x and 0

|-5| =5 — 38—
| ] |

-5 0 3

example:

|x — y| is the distance between x and y

41| =|1 - 4| = 3—
1 |

example: i 4

an alternative definition of |x| is
x| = VX2,

since taking the square root always gives a non-negative result! 8 of 12



Lecture 1

Inequalities with |x|

|x| in an inequality:

x| < a & —a<x<a

distance from x to 0 is less than a > 0 < x must lie between a and —a

|- a i

!
0

—
=&l X 4]
F—lx|—
absolute value properties:
Q|4 =4
Q |ab| = [a][b]

Q [ =13 for b#0
Q |a+ b| < |a| + |b|, the triangle inequality
prove these statements!

90f12



Lecture 1

Further properties

Absolute Values and Intervals
If @ is any positive number, then

5 |x|=a ifand only if x = +a

6. |x|<a ifandonlyif —a<x<ua

7. |x|>a ifandonlyif x> a or x < —a
8 |x|=a ifandonlyif —a=x=ua

9 |x|z=a ifandonlyif x=a or x = —a

note: “if and only if" is often abbreviated by the sign “&"

examples
(a) 2x=3] <1 | . x
(@)
(b) 2x —=3| >1 x

(b) 10 of 12



Lecture 1
Three important inequalities

Triangle inequality

|a+ b| <|a] + [b|

arithmetic mean: %(a + b); geometric mean v/ab

Arithmetic-geometric mean inequality

1
@gi(a—i—b) fora,b>0

v

Cauchy-Schwarz inequality

(ac + bd)? < (a° + b%)(c? + d?)

A

110f 12



Lecture 1
Proof of the arithmetic-geometric mean inequality

@ multiply inequality by 2 and square:

1
\/Egz(am) & 4ab < (a+ b)?

@ use direct proof: start on RHS until the LHS is obtained

(a+b)? = a°+2ab+ b
= 2%+ 2ab+2ab— 2ab + b?
= 4ab+(a—b)*> , (a— b)?>0 and therefore
> 4ab

12 of 12



Lecture 2

What is a function?

examples:

height of the floor of the lecture hall depending on distance; stock market
index depending on time; volume of a sphere depending on radius

What do we mean when we say

‘y is a function ofx?‘

Symbolically, we write y = f(x), where
@ x is the independent variable (input value of f)
@ yisthe dependent variable (output value of fat x)

o fisafunction ("rule that assigns xto y" )

a function acts like a "little machine”:
N — I —_— fx)
Input Qutput

Important: uniqueness — only one value f(x) for every x! 10of23



Lecture 2
Definition of a function

Definition

A function from a set D to a set Y is a rule that assigns a unique (single)
element f(x) € Y to each element x € D.

- "':/,;:_-——\\bf{g?

o

= f(x)

D = domain set ¥ = set containing
the range

2 0of 23



Lecture 2

Domain, range and some notation

ﬁ
x -/-a/;'% f(a: 0

D = domain set ¥ = set containing
the range

@ The set D of all possible input values is called the domain of f.
@ The set R of all possible output values of f(x) as x varies throughout

D is called the range of f.
note: RC Y !

@ We write f maps D to Y symbolically as
f:D—Y

@ We write f maps x to y = f(x) symbolically as
f:x—y="Ff(x)

Note the different arrow symbols used! (Maplet) 30f23



Lecture 2
Natural domain

The natural domain is the largest set of real x which the rule f can be
applied to.

examples:
Function Domain x € D Range y € R
y = x> (—00, 00) [0, 0)
y=1/x (—00,0) U (0,00) (—00,0)U(0,00)
y =vx [0, 00) [0, 00)
y=vV1-x> [-1,1] [0,1]

4 of 23



Lecture 2

Graphs of functions

Definition
If f is a function with domain D, its graph consists of the points (x, y)
whose coordinates are the input-output pairs for f:

{(x, f(x))Ix € D}

examples: y

2

200

given the function, one can
sketch the graph

X

y = f(x) is the height of the
graph above/below x. 5 of 23



Lecture 2

Arbitrary curves vs. graphs of functions

recall: A function f can have only one value f(x) for each x in its
domain! This leads to the vertical line test:

‘ No vertical line can intersect the graph of a function more than once.

¥ ¥ ¥

1 A I W

(b) yv=V1- X2 © y=-V1- X2

6 of 23



Lecture 2

Piecewise defined functions

A piecewise defined function is a function that is described by using
different formulas on different parts of its domain.

examples:
. ¥
@ the absolute value function y =l
3_
X x>0 y=-x L
f(x)=|x|= T o T
=k={ % %2
1_
i | i 1 | i
3 2 o1 0] 1 2 3 F
. v
@ some other function
A ¥ = flx)
—-x ,x<0 T L1 4
f(x) = x2 ,0<x<1 y=1
1 ,x>1 Ir -
i | -I |
2 -1 0 I 2 2003




Lecture 2

Floor and ceiling functions

@ the floor function (o x
3_
f(x) = [x] A §
is given by the greatest integer less than or 1 v=ls
equal to x: = o s x
[1.3] =1, [-27] =-3 ol
¥
@ the ceiling function sl _ y=x
f(x) =[x 2r
(x) = [x] T e
is given by the smallest integer greater than L L
or equal to x: 2 - I 2 3
o —1F
[3.5] =4, [-1.8] = -1 o ol
8 of 23




Lecture 2

Some fundamental types of functions

@ linear function ‘ f(x) = mx+ b‘

m=-3
y=-3x
b = 0: all lines pass through the origin, m=-1
f(x) = mx n
One also says “y = f(x) is proportional to x” 0

for some nonzero constant m.

m = 0: constant function |f(x)=b




Lecture 2
Power function |

@ power function

a=n € N: graphs of f(x) for n=1,2,3,4,5

v o . N ,
) Yooy Yoyt
L x
| —

AN LT
i Al A A

a= —n, n e N: graphs of f(x) i

forn=-1,-2 o[ 1
Domain: x # 0
Range: y # 0
Domain: x # 0
Range: y>0

10 of 23




Lecture 2

Power function Il

still power function m now for a € Q: graphs of f(x) for

1132
4=73:32:3

Domain: 0 =x < =
Range: 0=y<=

y =32

1
0 1
Domain: 0 =x <=
Range: 0=y<o

0,
Domain: —% < x < =%
Range: -»<y<=

Domain: —% < x< =
Range: 0=y<=

11 0f 23



Lecture 2

Polynomials

@ polynomials

p(x) = apx" + ap_1x" 1 +... +ax+a,neEN
with a, # 0, coefficients ag, ai,...,an—1,an € R and domain R

n is called the degree of the polynomial

examples: linear functions with m # 0 are polynomials of degree 1
three polynomial functions and their graphs

3 42 1

p=X X _ =
y=3-3 2x +

e v
T oy=8af - 148 98 4 1hx— 1 Y=k -
3 16k
b
/\_ . N
1 2
L I A
T K R .
L _1Y/1 2 .
o
4+ -1
(a) (b) (©)

12 of 23



Lecture 2

Rational functions

@ rational functions

f(x) = @
q(x)

with p(x) and g(x) polynomials and domain R\ {x|g(x) = 0} (never

divide by zero!)

examples: three rational functions and their graphs

2 NOTTOSCALE

13 of 23



Lecture 2

Even more types of functions

Other classes (to come later):
@ algebraic functions

g =l = U
y = X"z — 4) y=x(1 = x)

B V3
¥ 4(.1 1y

¥
1 W
L ” ¥ L -
-10 of 0 51

7

S
2 gk
_3)

() (b) (c)

@ trigonometric functions

oL
T
T

@ exponential and logarithmic functions
° ...

14 of 23



Lecture 2

Increasing /decreasing functions

Informally,

@ a function is called increasing if the graph of the function “climbs” or
“rises” as you move from left to right.

@ a function is called decreasing if the graph of the function “descends”
or “falls” as you move from left to right.

examples:

function where increasing where decreasing

y =x? 0<x<o0 —00<x<0
y =1/x  nowhere —00 < x<0and0 < x < o0
y=1/x> —co<x<0 0<x<oo
y=x*3 0<x<o —00< x<0

15 of 23



Lecture 2

Even/odd functions

Definition

A function y = f(x) is an
@ even function of x if f(—x) = f(x)
@ odd function of x if f(—x) = —f(x)

for every x in the function’'s domain.

examples: )
y=13 - (x
(—.\',k x, y)
0 * (=x-y)
a)
Fex) = (—x)° = x2 = f(x): Fox) = (—x)*" —x® = —F(x):
even function; graph is symmetric odd function; graph is symmetric

about the y-axis about the origin 16 of 23



Lecture 2

Even/odd functions continued

further examples:

¥

Q f(—x) = —x=—f(x): odd
function

Q f(—x) = —x+14# f(x) and
—f(x) = —x—1# f(—x):

neither even nor odd!

17 of 23



Lecture 2

Sums, differences, products, quotients

If f and g are functions, then for every
x € D(f)n D(g)

(that is, for every x that belongs to the domains of both f and g)
we define

(f +8)(x) = f(x) + &(x)
(f —g)(x) = f(x) —&(x)
(8)(x) = f(x)g(x)
(f/8)(x) = f(x)/8(x) if g(x) #0

algebraic operation on functions = algebraic operation on function values

v

Special case: multiplication by a constant ¢ € R:

(cf)(x) = cf(x)

(take g(x) = c constant function) 18 of 23



Lecture 2

Combining functions algebraically

examples:
fx)=vx , gx)=v1-x
(natural) domains:
D(f) =[0,00)  D(g) = (=00,1]

intersection of both domains:

D(f)n D(g) =[0,00) N (—0o0,1] =[0,1]

function formula domain

freg (F+8)(x) = Vx+vI—x [0,1] = D(f) N D(g)
f-g (f —g)(x) = vx - V1-x [0,1]

g—f (g—f)x)= vl—x—\/>_< [0,1]

f-g (f-g)(xz f(x)g(x) = vx(1—x) [0,1]

flg é(x) = % z [0,1) (x = 1 excluded)
g/f £(x) =4 = /15 (0,1] (x = 0 excluslgd)




Lecture 2
Composition of functions

If f and g are functions, the composite function f o g (“f composed with

g") is defined by
(fog)(x) =1f(g(x))

X — g glx) f — f(g(x))
The domain of f o g consists of the numbers x in the domain of g for

which g(x) lies in the domain of f, i.e.

D(f o g) = {x|x € D(g) and g(x) € D(f)}

20 of 23



Lecture 2

Arrow diagram for a composite function

D(f o g) = {x|x € D(g) and g(x) € D(f)}
fog

Jig(x))

210f23



Lecture 2

Finding formulas for composites

examples:

f(x) =+ with D(f)=]0,00)

g(x) =x+1 with D(g)=(—00,00)
composite domain
(fog)(x)=r(g(x)) = velx [-1,0)
(gof)(x) = g(f(X)) =f(x) + 1 + [0, 00)
(fof)(x) = f(f(x)) = VF(x =\/_= [0, 00)
(gog)(x) =glg(x)) =g(x) +1=x+2 (=00, 00)

22 of 23



Lecture 2
The domain of composites

further examples:

composite domain

(fog)(x)=Ix| (-o0,0)
(gof)(x) =x [0,0)

See Thomas Calculus Sections: (1.1, 1.3, 1.4, and 1.5) for more examples

23 of 23
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Lecture 3

Radian measure

1
Ciriig ot

The radian measure of the angle ACB is the length 6 of arc AB on the
unit circle.

s = rf is the length of arc on a circle of radius r when 6 is measured in
radians.

conversion formula degrees « radians:

angle in radians T
360° corresponds to 2m = & = —

angle in degrees 180

1of 11



Lecture 3

Signed angles

¥ ¥

Terminal ray

Initial ray
x
Positive Initial ray 1 Negative
\ measure J‘ Terminal MeasuTe

ray

@ angles are oriented
@ positive angle: counter-clockwise

@ negative angle: clockwise

20of 11



Lecture 3

Large angles

note: angles can be larger than 27:

¥

counter-

3w

A /
clockwise: \_/9
ry

clockwise:

AN
N

e

h
3

A
A

3of 11



Lecture 3

Trigonometric functions

reminder: the six basic trigonometric functions

y

hypotenuse ¥ P(x, y)
r
¥\ opposite
U .

X
adjacent

sine: sinf = cosecant: cscf =
secant: secl =

cotangent: cotf =

cosine: cosf =
tangent: tanf =

XIS IXx ~Ix
KIXXIs< |~

note: These definitions hold not only for 0 < 8 < 7 but also for § < 0 and

0 >m/2. 40of 11



Lecture 3

Finding trigonometric function values

recommended to memorize the following two triangles:

because exact values of trigonometric ratios can be read from them

example:

1 .7 V3

Y
Cos — = —— sin— = —
4

2 0 "3 T

5of 11



Lecture 3

Finding extended trigonometric function values

a more non-trivial example:

y

[

/\ﬁ I’\%" \\
! |

2 Y _ g _ 2.\ —gnk

singm =¥ =sin(r— 37) =sin 3
: : Cein T —

see previous triangle: sin 3 = /3/2

here r=1= x=—1/2, y = /3/2
(why?)

from the above triangle we can now read off the values of all trigonometric

functions: <2> y 3
sin{ 3m) =7

csc<2 > r 2
=Ll _ <
3 y 3

6 of 11



Lecture 3

Periodic functions

note: for angle of measure # and angle of measure 6 + 27 we have the
very same trigonometric function values

example:
| N
vi[\ | 2, \ sin(f 4+ 27w) =sind
3 -3
' 1 N, cos(f +27) = cos@
\2 tan(f +2r) =tan6
T and so on

DEFINITION Periodic Function

A function f(x) is periodic if there is a positive number p such that

flx + p) = f(x) for every value of x. The smallest such value of p is the period
of f.

7 of- 14
O+



Lecture 3

Graphs of trigonometric functions

X

= e LUCL
b ofeso T

L)
|
) _
i3
3]
5
|
I
= 1ot i}
IVTEY E—-

B
Domain: —o < x << % Domain: —= < x < = Domuin‘.x#t’z—r_i ‘Tﬂ
Range: -l=y=1 Range: -1=y=1 Range: —s < y < o
Period: 27 Period: 2w oy 8 e ¥

(a) {b) riod: @

, "
¥ =secx [ =escx 1 y=ptx
w ‘ - : U ‘k ' ‘K
1 1 X
= ful 3o

x L
g7 w0 T - _w 0| = I % T
m m m 7 ["z’\ 2 \[F 2 2
Domain: x #:12—?. - :%” o Domain: x # 0, =, =2, ... Domain: x # 0, £7, £27, ...
Fitges pZLandyai Range: y=-landy= | Range: -z <y<x
ge: y=-landy= Period: 2w Period:

Period: 2w
(d) (e} ) 8 of 11



Lecture 3

An important trigonometric identity

Since x = rcosf and y = rsin @ by definition, for a triangle with r = 1 we
immediately have ‘ cos2f) +sin2f = 1 ‘ (why?)

v

Plcos @, sin )

|sin 8| 1

|cos 8] 1

This is an example of an identity, i.e., an equation that remains true
regardless of the values of any variables that appear within it.

counterexample: cosf =1

This is not an identity, because it is only true for some values of 8, ns%fth.



Lecture 3

Important trigonometric formulas

1 + tan?(8) = sec?(9)
1 + cot2(6)|= csc?()

cos(A + B) = cos (A)cos(B) + sin (A)sin(B)
sin(A ¥ B) = sin (4)cos(B) F cos(A)sin (B)|

10 of 11



Lecture 3

Important trigonometric formulas

cos(28) = cos?(8) — sin?(6)
sin(260) = 2 sin(6@) cos(6)

1+ cos (20
cos?(8) = (26)
2
1 — cos (26
sin?(8) = > (26)

See Thomas Calculus section 1.6

11 of 11



Lecture 4

Average rate of change

example: growth of a fruit fly population measured experimentally

g

350
Q(45, 340)
300
5
= 250 Ap =190
s 200
5 -
£ P(23, 150) day
E 150 e -
=
100
50
0 10 20 30 40 50

Time (days)
@ average rate of change from day 23 to day 457
@ growth rate on day a specific day, e.g., day 237

1 of29



Lecture 4

Growth rate on a specific day

study the average rates of change over increasingly short time intervals
starting at day 23:

—

Slope of PQ = Ap /At 250 B(35,350) 0 /o
o (flies /day) /LA 0145, 340)
2 L300 L =
(45, 340) M = 8.6 f 250

45=23 g

330 — 150 5 A

s E

(40, 330) 20 -23 ° 10.6 3 150

310 — 150 _ 100
(35,310) 35 -2 ° 13.3 50 :
(30, 265) % = 16.4 0" w2 3 %0 0 !

AU40) Time (days)
lines approach the red tangent at point P with slope

350 -0

3 _1q = 16.7 flies/day

2 0f 29



Lecture 4

Summary: average rate of change and limit

DEFINITION  Average Rate of Change over an Interval
The average rate of change of y = f(x) withrespect to x over the interval [x,, x] is

Ay - fx) = f(x1) _ flo + h) = flxy)

= % : h# 0.

30f29



Lecture 4
Informal definition of a limit

Definition

Let (x) be defined on an open interval about xo except possibly at xg
itself. If f(x) gets arbitrarily close to the number L (as close to L as we
like) for all x sufficiently close to xg, we say that f approaches the limit L
as x approaches xp, and we write

lim f(x)=1L,

X—X0

4 of 29



Lecture 4

Behaviour of a function near a point

example: How does the function

f(x):X -1

x—1

behave near xg = 17
@ problem: f(x) is not defined for xo = 1

@ but: we can simplify for x # 1:

(x —1)(x+1)

) = 2%

=x+1forx+#1

@ this suggests that
limf(x)=1+1=2

x—1

5 0f 29



Lecture 4

Limit: a geometric view

graphs of these two functions:

3
e

We say that f(x) approaches the limit 2 as x approaches 1 and write
lim f(x) =2
x—1

6 of 29



Lecture 4

The limit value does not depend on how the function is

defined at x

2 s == .
(@) flx) = “; = l] (b) glx) = { x—1 ey hxy=x+1

All these functions have limit 2 as x — 1!
However, only for h we have equality of limit and function value:

lim h(x) = h(1)
- 7 0f 29



Lecture 4

Finding limits of simple functions

We have just “convinced ourselves” that for real constants k and ¢

limx=c
X—C
and
lim k =k

X—C

The following important theorem provides the basis to calculate limits of
functions that are arithmetic combinations of the above two functions (like
polynomials, rational functions, powers):

8 of 29



Lecture 4
Limit laws

If L, M, c and k are real numbers and
lim f(x) =L and lim g(x) =M, then
X—C X—C

Q Sum Rule: limy_(f(x)+g(x)) =L+ M
The limit of the sum of two functions is the sum of their limits.

@ Difference Rule: limy_.(f(x) — g(x))=L—-M

© Product Rule: limy_,(f(x)-g(x))=L-M

Q Constant Multiple Rule: limy_c(k - f(x)) =k - L
. T f(x) L

© Quotient Rule: limy_, ¢ ﬁ =y, M#0

o

Power Rule: If s and r are integers with no common factor and s # 0,

then lim (F(x))"/* = L7/*
X—C

provided that L'/S is a real number. (If s is even, we assume that
1>0) 9029




Lecture 4

Using limit laws

. concerning proofs of this theorem see later ...
examples:

o lim_c(x3 —4x+2) = (rules 1,2)
= limy_cx3 — limy_c4x + limy_.2 = (rules 3 or 6,4)

=c3—4c+2

XXl At
o)l[)nc 215 - 213 (rules 5,1,2,3 or 6)
o lim 4x2 -3 = —2)2 —3=1+/13 (rules 6,2, 3 or 6,4)
xX——=2

So "sometimes” you can just substitute the value of x.

10 of 29



Lecture 4

Eliminating zero denominators algebraically

example: Evaluate

@ substitution of x = 1?7 No!/

@ but algebraic simplification is possible:

P4x—2 (x+2)(x—1) x+2

= = 1
x2 — x x(x —1) x X7
@ therefore,
X2 4 x=2 Lo x+2
I|m27:hm =3
x—1 X< —X x—1 X

11 0of 29



Lecture 4
Creating and cancelling a common factor

lim Vx2 4100 — 10
x—0 X2

@ substitution of x = 07
@ trick: algebraic simplification
Vx2+100 - 10 Vx2 +100 — 10 v/x2 + 100 + 10
x? x? Vx2 +100 + 10
(x? 4 100) — 100
x2(v/x2 +100 + 10)
1
Vx2 4100 + 10

VA2 F100-10 _ 1 1

@ therefore

l -
Rty X2 <20 /X2 1100 +10 20

12 of 29



Lecture 4
Limits involving sin 6 /6

y = % {radians)

| |

-3 I~ ‘ 217 T i

NOT TO SCALE

. sinf . .
eh—rpoT =1 (0 in radians)

13 of 29



Lecture 4

smH —1

Proof of limg_q 5~

show that both right-hand and left-hand limits are equal to 1:
¥

sinf < 0 < tanf
T proof via areas of two triangles and
I \ area sector; this implies
P sin 6
cosf < — <1
0
tan 6 by sandwich theorem (taking the limit
v as § — 01)
sin 6 i
. sinf
1< lim — <1
9—0+ 0
0 cosh ] -
77 0 A0 " symmetry: also limy_o- 5% =1
1 I sin9 -1
restrict to 0 < 6 < 7/2 A

14 of 29



Lecture 4
Applications of this theorem

examples:
(1) Compute

jim <577 (Gin2(h/2) = (1 — cosh)/2)
h—0 h
— 2sin? _
— Im 1—2sin“(h/2) -1
h—0 h
L sin(h/2) . B
= ATO_ hj2 sin(h/2) (6 =h/2)
= lim —ﬂsinﬁ (limit laws)
0—0
— 1.0=0

15 of 29



Lecture 4
Applications of this theorem

(2) Compute

. sin2x
lim =
x—0 bx

. (2/5)-sin2x
= lim ————+—
x—0 (2/5)-5x
. 2sin2x
= |lim =
x—05H 2x

.
= im 250 it Taws)

(0 =2x)

16 of 29



Lecture 4

The Sandwich Theorem

0 C

function f sandwiched between g and h that have the same limit

THEOREM 4 The Sandwich Theorem

Suppose that g(x) = f(x) = h(x) for all x in some open interval containing ¢,
except possibly at x = ¢ itself. Suppose also that

lim g(x) = lim A(x) = L.
X=¥L Xty

Then lim,—. f(x) = L.

17 of 29



Lecture 4

Application

example: Show that limg_gsinf = 0.

y=|al
1k y=sin#
il 7]
- e
-1F v=—|al

@ From the definition of
sin @ it follows that

—10] <sinf < |6|
@ We have

Jim (—[0]) = lim |6] =0

@ Using the sandwich
theorem, we therefore
conclude that

limsind =0

6—0

@ Similarly, one can prove
that limg_gcosf =1
18 of 29



Lecture 4

Limits: trying to be more precise

@ We have used informal phrases such as “sufficiently close”.
But what do they mean?
@ A picture might help:

i ﬁt
L P
3 7 *
Xp— ] X Xy + 8

@ Let's be precise: instead of
“for all x sufficiently close to xg ...

write
“choose & > 0 such that for all x, 0 < |x — x| <9 ..."

19 of 29



Lecture 4

The precise definition of a limit

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about x;, except possibly at xy itself. We
say that the limit of f(x) as x approaches x; is the number L, and write

lim fix) =L,

X=Xy

if, for every number € > 0, there exists a corresponding number 6 > 0 such that
for all x,

0<|x—x| <8 = |flx) — L| <.

20 of 29



Lecture 4

Testing the definition, part 1

example: show that lim,_,1(5x — 3) = 2; graphically:

id

‘1'=5x—7
2+¢€

-3

21 of 29



Lecture 4

Testing the definition, part 2

example: show that lim,_,1(5x — 3) = 2; algebraically:

; ot @ |f(x) — L| < e: this is what we want
Bds to be fulfilled!

. substitute: [(5x —3) —2| <€

= Vi & |bx —5| <e

ERNTT e |lx—1 < ie| (1)

@ given this inequality, we now need to
< find a 6 > 0 such that

0 < |x — xo| < ¢ is fulfilled
substitute: ‘0 <|x—-1] < 5‘ (2)

o matching (1) with (2) suggests to choose § = %¢, because:
if 0 < |x—1] <d =¢/5, then |f(x) —2| =5|x — 1| < 5i=¢
for all e.
22 of 29



Lecture 4

General recipe of how to apply the definition

How to Find Algebraically a & for a Given f, L, xo, ande > 0
The process of finding a & > 0 such that for all x

0<|x—x| <d = [f(x) —L| < e
can be accomplished in two steps.

1. Solve the inequality | f(x) — L| < e to find an open interval (a, b) contain-
ing xo on which the inequality holds for all x # x;.

2. Find a value of 8 > ( that places the open interval (x, — 8, xo + 8) centered
at xg inside the interval (a, ). The inequality | f(x) — L| < e will hold for all
x # Xp in this 8-interval.

23 of 29



Lecture 4

A slightly more complicated example, part 1

For the limit limy_5+/x —1=2and e = 1, find a 4 > 0 such that for all x
O<|x—=5l<d=|vVx—-1-2|<1

¥
.

v=Yr-—1

[~

B L%
Sl

B L]
odo N

of 1 2 10

24 of 29



Lecture 4

A slightly more complicated example, part 2

Find a 6 > 0 such that |[v/x —1—2| <1 forall 0 < |[x — 5| < ¢:
Q solve |f(x) — L| < e

substitute: [v/x —1—-2| <1

& —l<yx—1-2<1

& 1<yx—1<3

& 2<x<10

, ‘ i therefore (a, b) = (2, 10)
o e @ find 5

- ! find the distance from xg = 5 to the nearest
/ P | endpoint of (2,10), which is § = 3. Then

x€(5-5,5+06) =(2,8) C (2,10)
means 0 < |x — 5| < 3, which implies

[Vx—-1-2|<1

25 of 29



Lecture 4
One-sided limits

@ To have a limit L as x — ¢, a function f must be defined on both
sides of ¢ (two-sided limit)

o If f fails to have a limit as x — c¢, it may still have a one-sided limit if
the approach is only from the right (right-hand limit) or from the left
(left-hand limit)

@ We write

‘ limy_c+ f(x) = L‘ or ‘ lim_ .- f(x) = M‘

@ The symbol x — c¢' means that we only consider values of x greater
than c. The symbol x — ¢~ means that we only consider values of x
less than c.

26 of 29



Lecture 4

One-sided limits

@ right-hand limit: lim,_, .+ f(x) = L, where x > ¢

o left-hand limit: lim,_ .- f(x) = M, where x < ¢

THEOREM 6

A function f(x) has a limit as x approaches ¢ if and only if it has left-hand and

right-hand limits there and these one-sided limits are equal:

lim f(x) =L = lim f(x) =L and lim f(x) = L.
X—*c X

X

Limit laws, theorems for limits of polynomials and rational functions, and
the sandwich theorem all hold for one-sided limits

27 of 29
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Lecture 4
Limits of some piecewise linear function

example:

¥

-

y=fx)

L]
1 .t
0 2 3 4
C H lim,_,— f(x) ‘ lim,_c+ f(x) ‘ limy—.c f(x) ‘
0 n.a. 1 n.a.
1 0 1 n.a.
2 1 1 1
3 2 2 2
4 1 n.a. n.a.

28 of 29



Lecture 4

Jump function

example:

@ lim, o+ f(x) =1

o lim,_ - f(x)=-1

0 @ limy_of(x)
does not exist

29 of 29
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Lecture 5

Limits as x approaches infinity

special case of a limit:

’x approaching positive/negative infinity

example:

@ similar to one-sided limit

@ use slightly modified e-d
definition of a limit to capture
these cases

@ idea for this: choose a
particular d-interval ...

10f 20



Lecture 5

Limits as x approaches infinity: definition

1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x)=1L
X—00
if, for every number € > 0, there exists a corresponding number M such
that for all x
x>M = |f(x)—Ll<e
2. We say that f(x) has the limit L as x approaches minus infinity and

write
lim f(x)=1L

X——00

if, for every number € > 0, there exists a corresponding number N such
that for all x

x<N = |f(x)—Ll<e

N
[«]

=+

N
Q



Lecture 5

Limits at infinity for f(x) = 1/x

example:
Show that

No matter what
positive number € is,
the graph enters

| this band at x = 1

X and slays.

No matter what
positive number € is,
the graph enters
this band at v = -2
and stays.

Let € > 0 be given. We must find a
number M such that for all x

1

X

x>M= <e€

X

1
_0‘:

This holds if we choose M = 1/¢ or
any larger positive number.
(similarly, proof of limy_._~ % =0
and limy_ 400 k = k)

30f20



Lecture 5
Limit laws as x approaches infinity

simply replace x — ¢ by x — F00 in the previous limit laws theorem:

If L, M and k are real numbers and
I|m f(x) =L and Iirjrg g(x) = M, then
X—I00

x—+o00

Q Sum Rule: limy_+oo(f(x) +g(x)) =L+ M

Difference Rule: limy_1oo(f(x) — g(x)) =L - M
Product Rule: limy_,+00(f(x)-g(x))=L-M
Constant Multiple Rule: Iimxﬂioo(k f(x))=k-L

Quotient Rule: limy_ 4o ;((’3 — M M0

Power Rule: If s and r are integers with no common factor and s # 0,

then Ilr:ll':'l (f(x))r/s _ Lr/s

provided that L'/ is a real number. (If s is even, we assume that
L>0.) 4 of 20

—
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Lecture 5
Calculating limits as x approaches infinity

examples: (1)

1
lim (5+ ) = (sum rule)
X—00 X
. o1
= lim 5+ lim — = (known results)
X—00 xX—00 X
= 5

(2) method for rationals: pull out highest power of x
¥ “=5.t3+3.t—3

. 5x?>+8x—3 2,/&
lim ————— = "

X—00 3x2 +2
x2(5+8/x — 3/x?)
m

x—oo  x%(342/x?)

-2 NOTTOSCALE

50f 20



Lecture 5

Horizontal asymptotes

example: 1
A lim —=0
X—00 X
1
lim —=20
X——00 X
The graph approaches the line

y=0

§ asymptotically:  the line is an
i asymptote of the graph.

DEFINITION  Horizontal Asymptote
A line y = b is a horizontal asymptote of the graph of a function y = f(x) if
either
‘]_1[& fix)=b or Il],ll’lm f(x) = b.
6 of 20




Lecture 5

Calculating a horizontal asymptote

example: (already seen before)

¥ - 5:l+8x—3
y R a———

3x%+2 The graph has the line
2"/\ y =5/3 as a horizontal
Line y = % asymptote on both the left
and the right, because

5

=2 NOTTOSCALE

7 of 20



Lecture 5

Another application of the sandwich theorem. ..

... which also holds for limits such as x — iop:
Find the horizontal asymptote of f(x) = 2 + 57,

0 0< [ <|3] (why?)
. }.=2+£1.J o |imx_>:|:oo‘%|:0
A \ @ therefore, by the sandwich
theorem,
I -
I L L L L L x lim Snx =0
37 2w -w 0O T 2w 3w x—+oo X

@ hence,

lim <2 i S'”) —2
x—+o00 X

8 of 20



Lecture 5
oblique asymptote

If for a rational function f(x) = p(x)/q(x) the degree of p(x) is one

greater than the degree of g(x), polynomial division gives
f(x) =ax+ b+ r(x) with lim r(x) =0
x—to0

y = ax + b is called an oblique (slanted) asymptote.
example: £(x) 2x*-3 2 8 L 115

X (X)) =——=x— —+ ———

P Tx+4 7 49 49(7x +4)

¥

—115 i
m ——F = 0, SO that _22-3
x—2to00 49(7X + 4) 2L YEra
2 8 | it
y=5x——
7 49

is the oblique asymptote of f(x).

T
T T

9 of 20



Lecture 5

Infinite limits

example:
§ f(x) = 1 has no limit as x — 0. How-
1 You can get us high ever, it is convenient to still say that f(x)
as you want by + .
taking x close enough approaches 00 as x — 0. We write

to 0. No matter how

\high B is, the graph
B9 | goes higher. .
lim — =00
1 x—0t X
Q?
|
T * Similarly,
\ No matter how
low —B is, the
graph goes lower. . ]_
You can get as low as| ¢ -8 ||m - = —0
you want by taking x—0— X

x close enough to (0.

note: lim, g+ % = o0 really means that the limit does not exist because
1/x becomes arbitrarily large and positive as x — 07!

10 of 20



Lecture 5

One-sided infinite limits

example: find lim,_ 1+ X—il and lim,_ ;- ﬁ

3L
. 1
lim =00
L x—1+ x —1
and
i_
. 1
I 3 lim = —00

x~>1_X—1_

asy =1/(x—1)isjust y = 1/x
shifted by one to the right.

11 0f 20



Lecture 5

Two-sided infinite limits

example: what is the behaviour of f(x) = 1/x? near x = 07
s
No matter how lim = 00
fii high B is, the graph 5 —
goes higher. x—0 X2
as the values of 1/x? are positive and be-
come arbitrarily large as x — 0.

7
A"

4

o

12 of 20



Lecture 5

1
I
x | l \ 8 8 /
Xy — X +
| X
1y =fx) . e x
I 0 | | |
1 l 1 I
: ] 1 |
| |
B - t ] 1 |
I : I [ 1 |
I H | -B |
I H | T
I | 1 |
I H 1 1
| H I 1
.
x = i
TR | [¥=f®
0 X5 ‘s M xp+ 8 :
\if
1

For |x — xo| < 4, the graph of f(x) lies
above the line y = B below the line y = —B
13 of 20



Lecture 5

Precise definition of infinite limits

1. We say that f(x) approaches infinity as x approaches xy and write

lim f(x) = oo
X—X0

if, for every positive real number B, there exists a corresponding d > 0
such that for all x

O0<|x—x|<déd = f(x)>B
2. We say that f(x) approaches negative infinity as x approaches xg
and write

lim f(x) =—o0
X—X0

if, for every negative real number —B, there exists a corresponding § > 0
such that for all x
O0<|x—x|<éd = f(x)<-B

y
140orz0



Lecture 5

Using the definition

Prove that

@ given B > 0, find 6 > 0 such that
1
0<|x-0[<d = —5>B,
X

where the last inequality is equivalent to |x| < 1/v/B. Therefore,

@ choose § = - so that

VB
0<|\<5:>1>1:>1 L
X J— — — — =
x| 76 " x2 7 62

@ Hence, by definition

2
x—0 x 15 of 20



Lecture 5

Vertical asymptotes

example:
3 I|m+ — =00
x—0T X
1
lim — =—0o0
x—0— X
The graph approaches the line

x=0

i asymptotically; the line is an
il asymptote of the graph.

DEFINITION Vertical Asymptote
A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

lim f(x) = £00  or lim f(x) = £00.

x—*a

16 of 20



Lecture 5

An asymptote that is not two-sided

example: Find the horizontal and vertical asymptotes of

8

Check for the behaviour as x — £oo and as x — £2 (why?):
@ limy_ 4o f(x) = 0, approached from below.
o lim,_, 5 f(x)= — o0, limy_,_o+ f(x) =00
@ lim,_,— f(x) =00, lim, o+ f(x) = — oo (because f(x) is even)

Asymptotes are

’yzO, x=-2, x:2‘

17 of 20



Lecture 5

A one-sided asymptote

Vertical
asymptote,
x==2

Vertical
asymptote, x = 2

Horizontal
asymptote, y = 0

X

curve approaches the x-axis from only one side

18 of 20



Lecture 5

example: Find the asymptotes of

Lt e 1
y= Yy ] + 1+ i
X2 _3 -4 2 -4
(x) = y -
2x — 4 The vertical distance
6k between curve and
. . line goes to zero as x —» %
@ Rewrite by polynomial 5k
division: o, Oblique
- asymptote
F) =514 " ‘ il T
X) =73 2k y=2 41!
2 2x — 4 / R |
i
w//m 1 i : X
-1 00 1 I 4
@ Asymptotes are “1k
_ X _ 2k Vertical
y=3 +1, x=2 asymptote,
-3 =2

We say that x/2 + 1 dominates when x is large and that 1/(2x — 4)
dominates when x is near 2. 19 of 20



.L’Hopital’s Rule

Suppose that f(a) =g(a) =0

f and g are differentiable on an open
interval I containing a

and that g'(x) # 0 on I if x'# a. Then

i (12) - L@
x~a\g(x)) g'(a)

20 of 20



Lecture 6

Intuitive approach towards continuity

Definition (informal)

Any function whose graph can be sketched over its domain in one

continuous motion, i.e. without lifting the pen, is an example of a
continuous function.

example: ¥

0 i 2 3 4

.This function is continuous on [0, 4] except at x=1,x=2and x=4

10f12



Lecture 6

Continuity at a point

More precisely, we need to define continuity at interior and at end points.

example:
Continuity Two-sided

from the right  continuity Continuity
— e from the left
i | y=fy |
I i |
I I |
: ; —x
a ' b

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is continuous at an interior point ¢ of its
domain if

lim f(x) = flc).

Endpoint: A function y = f(x) is continuous at a left endpoint a or is
continuous at a right endpoint b of its domain if

ﬁ‘m_ f(x) = fla) or ]_1,11; f(x) = f(b), respectively.

20f12



Lecture 6

Continuity at an interior point

For any x = ¢ in the domain of f one defines:
@ right-continuous: lim,_, .+ f(x) = f(c)
@ left-continuous: lim,_ .- f(x) = f(c)

A function f is continuous at an interior point x = ¢ if and only if it is
both right-continuous and left-continuous at c.

Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following
three conditions:

QO f(c) exists.
© f has a limit as x approaches c.

© The limit equals the function value.

3of 12



Lecture 6

A catalogue of discontinuity types

If a function f is not continuous at a point ¢, we say that f is
discontinuous at c. Note that ¢ need not be in the domain of f.

examples:
¥ =fx)

(a) (b) (©) (d)

continuous not continuous jump discontinuity

y= sln—

Ty

(e)
infinite discontinuity oscﬂlating discontinuity 40f12



Lecture 6

Continuous functions

@ A function is continuous on an interval if and only if it is continuous
at every point of the interval.

@ A continuous function is a function that is continuous at every point
of its domain.

example:

@ y =1/x is a continuous
function: It is continuous at
every point of its domain.

@ It has nevertheless a

0 discontinuity at x = 0: No
contradiction, because it is not
defined there.

50f 12



Lecture 6

Algebraic combinations of continuous functions

Previous limit laws straightforwardly imply:

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = c¢, then the following combinations
are continuous atx = ¢.

1. Sums: fteg

2. Differences: f—s

3. Products: fe

4. Constant multiples: ke« f, for any number &k

5. Quotienls: fle provided gic) # 0

6. Powers: £, provided it is defined on an open interval

containing ¢, where » and s are integers

example: f(x) = x and constant functions are continuous = polynomials
and rational functions are also continuous 6 of 12



Lecture 6

Continuity for composites

THEOREM 10 Composite of Continuous Functions

If f is continuous at ¢ and g is continuous at f(c), then the composite g ° [ is
continuous at c.

gef

Continuous at ¢

i & -
~’"ﬂﬂéa"|ina;ﬁ_§\ " Continuous . g
e ate N at fie) T
€ fle) g flen

7 of 12



Lecture 6

Applying the previous two theorems

Note that y = sinx and y = cos x are everywhere continuous:

xsin x

Show that y =

o f(x)= % is continuous
(why?)

@ g(x) = |x| is continuous (why?)

o therefore y = g o f(x)is
continuous

X242 IS everywhere continuous.

27

8 of 12



Lecture 6

Continuous extension to a point

examp|e. l‘ y= M (radians)

sinx L — L,

f(x) = Sr ar—Zr | e =

NOT TO SCALE

is defined and continuous for all x # 0. As limy_.g SinX — 1, it makes sense
to define a new function

_ Siix for x #0
F(X)_{ 1 for x =0

Definition

If limy_,c f(x) = L exists, but f(c) is not defined, we define a new function

F(X):{ f(x)  forx#c

L for x=—c

I

which is continuous at c. It is called the continuous extension of f(x) to c.

9 of 12



Lecture 6

Finding continuous extensions

2 -6
example: Find the continuous extension of f(x) = )“’2_7)(4 to x = 2.
X J—
P 4+x—6
For x # 2, f(x) is equal to &- }'2%
x+3 lf:-::_(lr
F(X) = +2 (Why?) 1 | .L | | x
X oo 1 2 3 4
F(x) is the continuous extension of _ (@)
f(x)tox=2, as 3
yie x+13
5 \2" ’ x+2
lim f(x) = - = F(2 A ks
lim £(x) = > = F(2) A
1 1 L l L :
oo 1 2 3 407

10 0f 12



Lecture 6

The intermediate value theorem

A function has the intermediate value property if whenever it takes on two
values, it also takes on all the values in between.

THEOREM 11  The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every
value between f(a) and f(h). In other words, if yq is any value between f(a) and
f(b), then yy = f(e) for some ¢ in [a, b).

y=Mx)
fld)

110f12



Lecture 6

Geometrical interpretation of this theorem

¥y =[x

Yo

fla)

@ Any horizontal line crossing the y-axis between f(a) and f(b) will
cross the curve y = f(x) at least once over the interval [a, b].

@ Continuity is essential: if f is discontinuous at any point of the
interval, then the function may “jump” and miss some values.
12 of 12
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Lecture 7

calculate slope and tangent

Finding the Tangent to the Curve y = f(x) at (xq, yo)
1. Calculate f(xq) and f(xy + h).

2. Calculate the slope
lim flxo + k) — flxo)

R ===y

3. If the limit exists, find the tangent line as

y=yo + mlx = xo).

1 of 28



Lecture 7
Testing the recipe

example: Find slope and tangenttoy =1/x at xo =a#0
Q f(a) = —f@+m—J7 ¥
Q slope:

slope is —lj

VA

m = I|im

— m 2 (a+h)
h—0 h - a(a + h)
fim — = L
h—0 a(a + h) a2
@ tangent line at (a,1/a): y = 1/a+ (—1/a%)(x — a) or

y=--5
a a 2 0f 28



Lecture 7

Derivative

The expression
f(xo+ h) — f(x0)
h
.The limit as h approaches 0, if it exists, is called the derivative of fat xg

DEFINITION Derivative Function

The derivative of the function f(x) with respect to the variable x is the function
f' whose value at x is

) = hm flx + h}: = f(x)1

provided the limit exists.

If f/(x) exists, we say that f is differentiable at x. 3 of 28



Lecture 7

Equivalent definition and notation

choose z = x + h: h =z — x approaches 0 if and only if z — x

Alternative Formula for the Derivative

flz) — f(x)

f/) = lim —7—5—.

y=flx
secantsiopeis  equivalent notation: if y = f(x),
1) = fix)

i—4X

Qz fiz) d dy
/ /
=f(x)= —f(x)=—=
1 y' =)= f(x)=—
Plx, f(x) S(z) = flx) . . . .
calculating a derivative is called

| ‘ differentiation ‘

4 of 28




Lecture 7

Calculating derivatives from the definition

DEFINITION Derivative Function

The derivative of the function f(x) with respect to the variable x is the function
/' whose value at x is

£ = ’}i_%f(x + h}: =S

provided the limit exists.

example: differentiate

f'(x) = [calculation on whiteboard] =

1
2y/x

50f28



Lecture 7

Tangent line of the square root function

: f(x) = = fl(x)=—=
summary: f(x) = v/x (x) NG
calculate the tangent line to the curve at x = 4:

@ f(4) =2, so the line goes 3

through the point (4,2) y= él\t 1
@ slope m=1f'(4) =1/4 <
@ tangent line y =2 + m(x — 4), 2 y=Va
i.e. H
X
y = Z +1 5 1 | i .;. | ¥

note: one sometimes writes

T e N O R U
P& =5V =2 N

6 of 28



Lecture 7
Differentiation rules

Rule 1: Derivative of a Constant Function

If f has the constant value f(x) = c, then

df d

Rule 2: Power Rule for Positive Integers

If nis a positive integer, then

7 of 28



Lecture 7
Differentiation rules

Rule 3: Constant Multiple Rule

If uis a differentiable function of x, and c is a constant, then

d

—Ccu =
dx
h) —
(def. of derivative) = lim cu(x + h) — cu(x)
h—0 h
h) —
(Ilmlt |aWS) = C ||m U(X+ ) U(X)
h—0 h
(u is differentiable) = c@

dx 8 of 28




Lecture 7

Differentiation rules and their application

Rule 4: Derivative Sum Rule

If u and v are differentiable functions of x, then
d du dv

example: Differentiate y = x* — 2x% + 2.

% = %(X4—2X2—|—2)
_d d 9 d
(rule 4) = dX(X)+dX( 2X)—|—dX(2)
_d d, 5 d
(ies) = L4 (DLe)+ L)
d
le 2 = &3+ (-2)2x+—(2
(rule 2) x>+ ( )x—i—dx()
(rule 1) = 4x3 —4x+0=4x3 - 4x

9 0f28



Lecture 7

Finding horizontal tangents

summary: y =x*—2x>4+2 |y =4x>—4x

Now find, for example, horizontal tangents:

V=83 —4x=0 = 4x(x*-1)=0 = xec{0,1,-1}

§ 3
Y oy=xt-24s242

0,2)

1
-1. 1) (1.1

10 of 28



Lecture 7
Further differentiation rules

Rule 5: Derivative Product Rule

If u and v are differentiable functions of x, then

d(uv) 4y —i—uﬂ
dx '

dx dx
Rule 6: Derivative Quotient Rule

If u and v are differentiable functions of x and v(x) # 0, then

du dv
i (E) _ dxV — Uax
dx v2

Common mistakes:
(w) =V (u/v) =d )V

is generally WRONG! 11 of 28



Lecture 7

Using product and quotient rules

examples: (1) Differentiate y = (x% + 1)(x3 + 3):

use |y = (uv) = uv'v+ v/

here: u=x>+1, v=x>+3
v =2x, v/ = 3x?
r_ 3 2 2 _ g 4 2
y' =2x(x* +3) + (x + 1)3x° = 5x" 4+ 3x~ + 6x

(2) Differentiate y = (t2 — 1)/(t> + 1):

u uv—u/

use y,:(V)/: v2
here: u=t>—1, v=t>+1
u=2t, VvV =2t
;o 2t(P+1)— (212t 4t
N (t?2 +1)? (2 +1)2

12 of 28



Lecture 7
Another differentiation rule

Rule 7: Power Rule for Negative Integers

If nis a negative integer and x # 0, then
d n n—1
—x" = nx
dx
[proof: define n = —m and use the quotient rule]

example:

d 1 d, B _ _
& (W) = &(X 11) = —11x 12 .

13 of 28



Finding higher derivatives

example: Differentiate repeatedly f(x) = x° and g(x) = x

f'(x) = 5x*
f"(x) = 20x3
f"(x) = 60x°

F*)(x) = 120x
) (x) = 120
fO(x)=0
fN(x) =0

-2

gx)=-2x73
g'(x) = 6x 4
g"(x) = —24x7°

14 of 28



Lecture 7

Derivatives of trigonometric functions

(1) Differentiate f(x) = sin x:
@ Start with the definition of f'(x):
sin(x + h) — sinx
fl(x) =1
(x) Pl h

@ Use sin(x + h) = sin x cos h + cos x sin h:
F(x) = lim sinx(cos h — 1) 4 cos xsin h
X) =
Pl h

@ Collect terms and apply limit laws:

/ . . cosh—1 . sinh
f'(x) = sinx lim ———— 4 cos x lim —
h—0 h h—0 h
@ Use limp_o ==L — 0 and limp_o &2 = 1 to conclude
07 07 h

f(x) = cosx 15 0f 28



Lecture 7

Summary

Derivatives of trigonometric functions

&sinx = CosXx
&cosx = —sinx
—tanx = —sec2x
dx cos?
d
&secx = ax (cosx) = sec xtan x
d d /cosx 5
&cotx = d_< o x )z—cscx
d 1
&cscx = d_ <—> = — csc x cot x

160128



Lecture 7

Derivative of composites

example: relating derivatives

y = %x is the same as
= 1u and u=3x
y=s5 =3X.
By differentiating
dy 3 Ay 1 di_,
dx 27 du 2’ dx
we find that
dy _ dy d
dx  dudx’

17 of 28



Lecture 7

The chain rule

Composite = g

Rate of change at
xis gl - glx).

8

Rate of change ot " Rateof change
atxis gly). ——e——  atglx)is flglx)) =
x u = g(x) ¥y = flu) = flg(x))

THEOREM 3 The Chain Rule

If f(u) is differentiable at the point # = g(x) and g(x) is differentiable at x, then
the composite function (f ° g)(x) = f(g(x)) is differentiable at x, and

(f = g)'(x) = f(glx))g'(x).
In Leibniz’s notation, if y = f{u) and # = g(x), then
@ _ & o

dx  du dx’

where dy/du is evaluated at u = g(x).

18 of 28



Applying the chain rule

examples: (1) Differentiate x(t) = cos(t? + 1).

d< _ dx du
USE | &t = du " dt

here: choose x = cos u and u = t% + 1 and differentiate,

d d
d—i:—sinu and d—ltj =2t.
Then d
d_); = (—sinu)2t = — 2tsin(> + 1) .

(2) d%sin(xz + x) = cos(x? + x)(2x + 1)
(3) A chain with three links:
—2cos 2t

cos?(5 —sin2t)
19 of 28
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p tan(5 —sin2t) = [Details on white board] =



Lecture 7

Implicit differentiation

problem: We want to compute y’ but do not have an explicit relation
y = f(x) available. Rather, we have an implicit relation

F(x,y)=0
between x and y.

example:
F(x,y)=x>+y>—1=0.

solutions:

@ Use implicit differentiation

20 of 28



Lecture 7

Differentiating implicitly

example: Given y? = x, compute y’.
new method by differentiating implicitly:
o Differentiating both sides of the equation gives 2yy’ = 1.

1
2y |

@ Solving for y" we get |y’ =

Compare with differentiating explicitly:

@ For y? = x we have the two explicit
solutions y| = \/x = y12 = £/x
with derivatives | y; , = iﬁ :

@ Compare with solution above:
substituting y = y1 0 = £/
therein reproduces the explicit
result.

21 of 28



Lecture 7

Differentiating implicitly

Implicit Differentiation

entiable function of x.

3. Solve for dy/dkx.

1. Differentiate both sides of the equation with respect to x, treating y as a differ-

2. Collect the terms with dy/dx on one side of the equation,

X2 )2
example: the ellipse again, - + 35 =1
P IPs€ again, — + b
2x  2yy’
(%) ? + ? =0
2yy’ 2x
O ==
2 x
Q) = ——5—, as obtained via parametrisation in the previous lecture.
acy

22 of 28



Lecture 7

Higher-order derivatives

Implicit differentiation also works for higher-order derivatives.
example:

@ For the ellipse we had after differentiation:
2x  2yy'

a2 b2

0

o Differentiate again:
2(y” +yy")

— 4+ =0
22 b2
. . 2 L
@ Now substitute our previous result y' = —g—2§ and simplify

(this takes a few steps):
, b1

_?ﬁ’
23 of 28



Lecture 7

Extreme values of functions

DEFINITIONS  Absolute Maximum, Absolute Minimum
Let f be a function with domain D. Then f has an absolute maximum value on
D at a point c if

fx) = f(e) for all x in D

and an absolute minimum value on D at ¢ if

fx) = f(e) forallxin D.

example:
1 .
y=smx

These values are also called y = cosx
absolute extrema, or global

pud - x
extrema. B 0 b

2 2

T 24 of 28




Lecture 7
Same rule for different domains yields different extrema

example:

y=22
D=10,2]

¥

|

)

Yot
D=i0.2)

|

(d)

2

H Domain ‘ abs. max. ‘ abs. min. ‘

(@) || (—o0,00) none 0,at0
®) [ [0.2] 4,at2 | 0, at0
(c) (0,2] 4, at 2 none
(d) (0,2) none none

25 of 28



Lecture 7

Local (relative) extreme values

Absolute maximum
No greater value of fanywhere.
Local maximum Also a local maximum.
No greater value of
[ nearby.

Local minimum
No smaller value
of f nearby.

Absolute minimum
No smaller value of
Janywhere. Alsoa |

local minimum. :
]
a

| Local minimum
I No smaller value of

|
1
|
1
1
i
: f nearby. :
1 1

I
1
I
I
1
1
|
1
1
1
1
¢

I
1
e d b

DEFINITIONS Local Maximum, Local Minimum
A function f has a local maximum value at an interior point ¢ of its domain if

f(x) = f(e) for all x in some open interval containing c.
A function f has a local minimum value at an interior point ¢ of its domain if

f(x) = f(e) for all x in some open interval containing c.

26 of 28



Lecture 7

Finding extreme values

If f has a local maximum or minimum value at an interior point ¢ of its
domain, and if f' is defined at c, then f'(c) = 0.

basic idea of
the proof:

Local maximum value
\ -

e l
Sl |
| I
I I
I I
I I
I 1
Secant slopes =
(never pogitive)
I

Secant slopes == 0
(never negative)

|

| |

| |

| |

| | x
X X

27 of 28



Lecture 7

Conditions for extreme values

Where can a function f possibly have an extreme value? Recall the

If f has a local maximum or minimum value at an interior point ¢ of its
domain, and if f' is defined at c, then f'(c) = 0.

answer:
© at interior points where f' =0
@ at interior points where f’ is not defined
© at endpoints of the domain of f.

combine 1 and 2:

DEFINITION Critical Point

An interior point of the domain of a function f where f' is zero or undefined is a
critical point of f.

28 of 28



Lecture 8

Calculating absolute extrema

How to Find the Absolute Extrema of a Continuous Function f on a
Finite Closed Interval

1. Evaluate f at all critical points and endpoints.
2. Take the largest and smallest of these values.

example 1: Find the absolute extrema of f(x) = x? on [-2,1].
o f is differentiable on [—2, 1] with f'(x) = 2x
o critical point: f'(x) =0 = x=0

@ endpoints: x = —2 and x =1
e f(0)=0,f(-2)=4 f(1)=1
Therefore f has an absolute maximum value of 4 at x = —2 and an

absolute minimum value of 0 at x = 0. 1 of 21



Lecture 8

Absolute extrema with f'(c) being undefined

example 2: Find the absolute extrema of f(x) = x?/3 on [-2,3].

o f is differentiable with f'(x) = %x_1/3
except at x =10

o critical point: f'(x) = 0 or f’(x)
undefined = x =0

@ endpoints: x = —2 and x =3

o f(—2) =4, f(0)=0, f(3) =9

Local

maximum 2 [

Absolute maximum;
also a local maximum

| 1 x

1
\\ 1 2 3
Absolute minimum;
also a local minimum

Therefore f has an absolute maximum value of /9 at x = 3 and an

absolute minimum value of 0 at x = 0.

20of 21



Lecture 8
Rolle’s theorem

motivation:
¥y

fley=0 ¥

[ J S A ——

Let f(x) be continuous on [a, b] and differentiable on (a, b). If
f(a) = f(b) then there exists a c € (a, b) with

f'(c)=0.

3 0of21




Lecture 8

Assumptions in Rolle’s theorem

Let f(x) be continuous on [a, b] and differentiable on (a, b). If
f(a) = f(b) then there exists a c € (a, b) with
f'(c)=0.

It is essential that all of the hypotheses in the theorem are fulfilled!

examples:
¥ ¥ h

y=1ix y=rx
q
% ! \ 2 1 1 ! -
| a xg b a xy b
(a) Discontinuous at an (b) Discontinuous at an (¢) Continuous an [, #] but not
endpoint of [a, b] interior point of [a, b] differentiable at an interior

point 4 of 21



Lecture 8

Horizontal tangents of a cubic polynomial

example: Apply Rolle’s theorem to f(x) = %3 —3x on [-3,3].

y
(-V32v3) y y=%5 %

@ polynomial f is continuous on [—3, 3]
and differentiable on (—3,3)

« e f(=3)=f(3)=0

@ by Rolle’s theorem there exists (at
least!) one ¢ € [-3,3] with f'(c) =0

(V3,-2v3)

From f/(x) = x?> — 3 = 0 we find that indeed x = ++/3.
5 of 21



Lecture 8

Increasing and decreasing functions

DEFINITIONS  Increasing, Decreasing Function
Let f be a function defined on an interval / and let x; and x, be any two points in /.

1. If f(x;) < f(x2) whenever x; < x,, then f is said to be increasing on /.
2. If f(x2) < f(x;) whenever x; < x;, then f is said to be decreasing on /.

A function that is increasing or decreasing on / is called monotonic on /.

Suppose that f is continuous on [a, b] and differentiable on (a, b).
If f'(x) > 0 at each point x € (a, b), then f is increasing on [a, b].
If f'(x) < 0 at each point x € (a, b), then f is decreasing on [a, b].

6 of 21



Lecture 8

Increasing and decreasing functions

example: Find the critical points of f(x) = x3 — 12x — 5 and identify the
intervals on which f is increasing and decreasing.

f'(x) =3x*> =12 =3(x*> —4) = 3(x + 2)(x — 2)

=x1=-2,x =2
These critical points subdivide the natural domain into
(=00, —2),(-2,2),(2,00) .

rule: If 2 < b are two nearby critical points for f, then f' must be positive
on (a, b) or negative there. (proof relies on continuity of 7). This implies
that for finding the sign of f’ it suffices to compute f’(x) at one x € (a, b)!

here: f'(=3) =15, f/(0) = —-12, f'(3) =15

7 of 21



Lecture 8

Increasing and decreasing functions

intervals —00< X< =2 —2<x<2 2<x<X@
sign of f’ + - +
behaviour of f increasing decreasing increasing

Y y=x-12x-5

20 -

8 of 21



Lecture 8

First derivatives and local extrema

example:
Absolute max
f' undefined

No extreme

f'=0

No extreme

Local min

Absolute min

[ RO

|
I
I
|
3 b
@ whenever f has a minimum, ' < 0 to the left and ' > 0 to the right

@ whenever f has a maximum, f’ > 0 to the left and f’ < 0 to the right

= At local extrema, the sign of f/(x) changes!
9 of 21



Lecture 8

First derivatives and local extrema

First Derivative Test for Local Extrema

Suppose that ¢ is a critical point of a continuous function f, and that f is differen-
tiable at every point in some interval containing ¢ except possibly at c itself.
Moving across ¢ from left to right,

1. if f’ changes from negative to positive at ¢, then f has a local minimum at c;
2. if f’ changes from positive to negative at ¢, then f has a local maximum at c;

3. if f’ does not change sign at ¢ (that is, f’ is positive on both sides of ¢ or
negative on both sides), then f has no local extremum at c.

10 of 21



Lecture 8

Using the first derivative test for local extrema

example: Find the critical points of f(x) = x*3 — 4x/3_ |dentify the
intervals on which f is increasing and decreasing. Find the function's

extrema.

4 4 4x—1
/ /3 _* -2/3_ 7
f'(x) = 3X 3x 3 2

:>X1:1,X2:0

intervals x <0 0<xx1 1<x
sign of f’ - - +
behaviour of f decreasing decreasing increasing

Apply the first derivative test to identify local extrema:
@ f’ does not change sign at x = 0 = no extremum

@ f’ changes from — to + = local minimum

11 of 21



Lecture 8

Summary: geometrical picture

| | x
-1 0 1 2 3 /4
-1F
-2
=, -3
Since limy_, 1o = 00, the minimum at x= 1 with f(1) = —3is also an

.absolute minimum

/ = —ool
Note that /(0) ool 19 of 21



Lecture 8

Concavity of a function

example: ¥

intervals x <0 0<x
turning of curve turns to the right turns to the left
tangent slopes decreasing increasing

The turning or bending behaviour defines the concavity of the curvet3 of 21



Lecture 8

Testing for concavity

DEFINITION Concave Up, Concave Down
The graph of a differentiable function y = f(x) is

(a) concave up on an open interval [ if f' is increasing on /

(b) concave down on an open interval [ if f’ is decreasing on 1.

The Second Derivative Test for Concavity

Let y = f(x) be twice-differentiable on an interval I.

1. If f” > 0 on [ the graph of f over [ is concave up.

2. If f" < 0 on [, the graph of f over [ is concave down.

14 of 21



Lecture 8

Applying the concavity test

example 1: X
3 "
y=x =y =06x

for (—o0,0) it is y” < 0:graph
concave down;

for (0,00) it is y” < 0:

graph concave up

example 2: 4T
y=x>=y"=2>0

graph is concave up
everywhere 50

X
15 of 21



Lecture 8

Second derivatives at extrema

Look at second derivative instead of sign changes at critical points in order
to test for local extrema:

THEOREM 5 Second Derivative Test for Local Extrema
Suppose f” is continuous on an open interval that contains x = ¢.

1. Iff'(¢c) = 0and f"(c) < 0, then f has a local maximum at x = c.
2. Iff'(¢) = 0and f"(c¢) > 0, then f has a local minimum at x = c.

3. If f'(c) = 0and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.

16 of 21



Lecture 8

Summary: curve sketching

Strategy for Graphing y = f(x)

1. Identify the domain of f and any symmetries the curve may have.

Find y' and »".

Find the critical points of f, and identify the function’s behavior at each one.
Find where the curve is increasing and where it is decreasing.

ook N

Find the points of inflection, if any occur, and determine the concavity of the
curve.

Identify any asymptotes.

7. Plot key points, such as the intercepts and the points found in Steps 35, and
sketch the curve.

17 of 21



Lecture 8

Application: curve sketching

example: Sketch the graph of f(x) = (){:[)1(22

© The natural domain of f is(—o00, 00); no symmetries about any axis.
© calculate derivatives:

f'(x) = [calculation on whiteboard]
2(1 — x?)
(14 x2)?

f"(x) = |[calculation on whiteboard]
4x(x? —3)
(1+x2)3

© critical points: f’ exists on (—o0, 00) with f/(£1) = 0 and
fl(-1)=1>0, f'(1) = —1<0;

(—1,0) is a local minimum and (1,2) a local maximum. 18 of 21



Lecture 8

Example continued 1

@ On (—o0,—1) itis f'(x) < 0: curve decreasing; on (—1,1) it is
f’(x) > 0: curve increasing; on (1,00) it is f/(x) < 0: curve
decreasing

Q (x)=0ifx= £+3o0r0; f/ <0 on (—o0,—+/3): concave down;
f"” >0 on (—+/3,0): concave up; f” < 0 on (0,1/3): concave down;
" >0 on (v/3,00): concave up. Each point is a point of inflection.

© calculate asymptotes:

(x+1)? x®>+2x+1 1+2/x+1/x
1+x2  14+x2  1/x2+1

f(x) =

f(x) > 1T asx wooand f(x) 1" asx — —oco: y=11is a
horizontal asymptote. No vertical asymptotes.

19 of 21



Lecture 8

Example continued 2

©Q sketch the curve:

y Point of inflection

where x = V3

y=1
Horizontal
asymptote
& L X
-1 1
Point of inflection
where x = —V3

20 of 21



Lecture 8

Summary
y =1 y =1k y =f)
Differentiable = y' > 0 = rises from y' < 0 = falls from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy
/ or \ / or \
y" changes sign
y" > 0 = concave up y"' < 0 = concave down Inflection point
throughout; no waves; graph | throughout; no waves;
may rise or fall graph may rise or fall
/‘\ oo \° 1
+ e
y' changes sign = graph y'=0and y"<0 y'=0 and y">0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum

210of 21
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L’Hopital’s Rule

If the continuous functions f(x) and g(x) are
both zero at x = a then

lim f(x)
x~a g(x)

cannot be found by substituting x = a. The substitution
produces 0/0, a meaningless expression, which we cannot
evaluate.

10f7



Lecture 9
L’Hoépital’s Rule

THEOREM 6  L'Hopital’s Rule (First Form)
Suppose that f(a) = g(a) = 0, that f'(a) and g’(a) exist, and that g’(a) # 0.
Then

f&x) _ f'(a)

S glx)  ga)

Caution

To apply 'Hopital’s Rule to f/g, the derivative of f divide by the
derivative of g. Do not fall into the trap of taking the derivative of
f/g. The quotient to use is f'/g’ , not (f/g)'

20f7



Lecture 9

L’Hoépital’s Rule

EXAMPLE 1 Using L'Hopital’s Rule

@) lim 3x — sinx _ 3 — cosx — >

x—0 * 1 x=0

2

I S
li Vi+x—1_2VI+x _ 1
®) lim =% T S

Sometimes after differentiation, the new numerator and denominator both equal

zero at x = a, as we see in Example 2. In these cases, we apply a stronger form
of I’Hopital’s Rule

3of7



Lecture 9

L’Hoépital’s Rule

THEOREM 7  L'Hopital’s Rule (Stronger Form)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open inter-
val I containing a, and that g'(x) # O onIifx # a.Then

tim 2%~ iy L)

D gx)  xou g'(x)°

4 0of 7



Lecture 9

L’Hoépital’s Rule

EXAMPLE 2 Applying the Stronger Form of LU'Hopital’s Rule
VI+x—1-x/2

=)

)

a) lim 9
( ) x—0 xz 0
—-1/2
(121 + X7 =12 0 }
= lim o Still o differentiate again.
x—0
—=3/2
U LU S U A
= =—-= ot —; limit is found.
x—0 2 8 0
. X — sinx 0
b lim ———— -
( ) X—>0 x3 0
.1 —cosx
= lim ———— sttt 2
x—0  3x 0
. sinx 0
= — Still —
xlgr}] 6x 0
. COSX 1
= lim = — N(wtg; limit is found.
=0 6 6 0 50f7



Lecture 9

L’Hoépital’s Rule

EXAMPLE 3 Incorrectly Applying the Stronger Form of L'Hépital’s Rule

. 1 —cosx 0
lim 3 =
x—0 x + x 0
. sin x 0
= lim =—-=0 Notg; limit is found.
y—0 1 + 2x 1 0

Up to now the calculation is correct, but if we continue to differentiate in an attempt to
apply I’Hopital’s Rule once more, we get

- lim sinx _ lim S95% _ 1
x—0 x + x2 =0l +2x So 2 2’

which is wrong. PHopital’s Ruk can only be applied to limits which give indeterminate
forms, and 0/1 is not an indeterminate form
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Lecture 9

L’Hoépital’s Rule

fim (—— — L
r—o\sinx X/’

1 1 _x —sinx . . o
R - f S Common denominator is x sin x
sin x X sin x
Then apply 1I’H6pital’s Rule to the result:
. 1 1) _ ;. x—sinx 0
lim|—=———+ ] = lim ~————— =
x—0 \ SIn X x—0 Xsinx 0
. 1 — cosx
= lim ——— siill 2
x—0 SInx + xcosx 0

lim ~——snx  _0_
y—0 2cCoSx — xsinx 2 ’
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Lecture 10

Natural Logarithm

DEFINITION  The Natural Logarithm Function

lan/ldt, x>0
1

If x > 1, then In x is the area under the curve y = 1/t from t =1 to t = x
(Figure 7.9). For 0 < x < 1, In x gives the negative of the area under the curve from x to
1. The function is not defined for x = 0. From the Zero Width Interval Rule for definite

integrals, we also have
'
Inl = / Ydt =0.
1
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Lecture 10

Natural Logarithm

] —
S
Il
s~
N — -
S

X
If0<x<l,thenlnx/
1

gives the negative of this area.

If x> 1,thenlnx =

gives this area. y=Inx
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Lecture 10

Properties of Logarithms

For any numbers @ > 0 and x > 0, the natural logarithm satisfies the following
rules:

1. Product Rule: Inax = Ina + Inx

2. Quotient Rule: ln% =Ina — Inx

3. Reciprocal Rule: ln% = —Inx Rule 2 with @ = 1

4. Power Rule: Inx" = rinx r rational

30of 16



Lecture 10

Properties of Logarithms

In0) = —o0
In1

Ine

i
=

4 of 16



Lecture 10

The Derivative of y=1Inx

For every positive value of x, we have

=1
T X
d . _ldu
dxlnu_udx’ u>0

50f 16



Lecture 10

Using Logarithmic Differentiation

Find dy dx if

_ P+ D+ 3)

P— , x>1.

Solution We take the natural logarithm of both sides and simplify the result with the
properties of logarithms:

(2 + Dx +3)"2
x—1

Iny = In
=In((x>+ Dx+3)") —In(x—1) Rule 2
=1n(x2+ 1)+ln(x+3)1/2—1n(x— 1) Rule 1

— G241+ %ln(x +3)—In(x—1).  Rule3

6 of 16



Lecture 10

Using Logarithmic Differentiation

We then take derivatives of both sides with respect to x, using Equation (1) on the left:

1dy 1 1 11
Yidx 32 41 2x+2 x+3 x-—-1

Finally, we substitute for y:

dy (P D +3)2 0 o L1
dx x—1 2+1 2x+6 x-—1)°

7 of 16



Lecture 10

The Exponential Function

Ine=rlne=r-1=r

DEFINITION  The Natural Exponential Function
For every real number x, ¢ = In"'x = expx.

Inverse Equations for ¢* and In x
e = x (allx > 0)

In(e*) = x (all x)

8 of 16



Lecture 10

The Exponential Function

DEFINITION  General Exponential Functions
For any numbers ¢ > 0 and x, the exponential function with base a is

at = exlna.

exlna — exlne — ex-l — X

When a = e, the definition gives a* = = e".

9 of 16



Lecture 10

Laws of Exponents for e

For all numbers x, x;, and x;, the natural exponential e* obeys the following laws:

1. ebl-e® = evtm

- 1

X —
2. e =—
e

X1

e _
3. P en v

4. (exl)xz — exlxz — (exz)xl

10 of 16



Lecture 10

The Derivative of e*

If u is any differentiable function of x, then

d

du
— u
e = e
dx

dx’

11 0f 16



Lecture 10

Applying the Chain Rule with Exponentials

i*x_ 7xi_ X _ _ . L
(a) o =e dx( x) =e*(—1) = —e with u = —x

sinx i
dx

sinx

(b) d%lcesmx =e (sinx) = """ -cosx with u = sinx

12 of 16



Lecture 10

The Derivative of a

We start with the definition a* = e*"?:

%ax _ iexlna _ exlna,i(xlna) fxe“:e“%
=a*lna.
Ifa > 0,th
d x_ x
wy T~ Ina.

Ifa > 0 and uis a differentiable function of x, then a " is a differentiable function

of x and

iall =a'lna du
dx dx’

13 of 16




Lecture 10

Differentiating a General Power Function

Find dy/dxify = x*, x> 0.

Solution Write x* as a power of e:

y=x =e¢ . a*witha = x.
Then differentiate as usual:

ﬂ — iexlnx

dx dx
_ xlnxi
=e Ix (xInx)
_ < 1 )
=x"[(xgx + Inx
=x*(1 + Inx).

14 of 16



Lecture 10

Logarithms with Base a (log, x)

DEFINITION  log, x

For any positive number a # 1,

log, x is the inverse function of a*

Inverse Equations for «* and log, x

alosx = (x> 0)
log, (a¥) = x (all x)
log,x = —- Inx Inx

&a In Ina

15 0f 16



Lecture 10

The Derivative of (log, x)

Tofind derivatives or integrals involving base a logarithms, we convert them to
natural logarithms

If u is a positive differentiable function of x, then

d Inu) _ 1 _ 1 1du
dx (loga w) = <lna) Ina d.x(lnu)_lna udx’

1 1du

d _ 1 1du
dx (logy u) = Ina udx

16 of 16
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Lecture 11

Inverse Trigonometric Functions

Domain restrictions that make the trigonometric functions one-to-one

Function  Domain Range
sin x [—/2, /2] [—1, 1]
COS X [0, 7] [—1,1]

f 12



Lecture 11

Inverse Trigonometric Functions

Function  Domain Range
y tan x
1
|
tan x (=m/2,7/2) (—00, 00) N
_m 0 =
2 2
|
|
y
|
cotx }
|
|
|
cotx (0, ) (—00, 00) | .
0 i ™
2\ |
|
|
|
|
2




Lecture 11

Inverse Trigonometric Functions

Function Domain Range y sec x
|
|
|
j
! |
sec x [0, 7/2)U(7/2, 7] (—0o0,—1]1U[1, c0) - 7‘7 Lx
2
L [
|
|
|
|

cse x [—/2,0)U (0, 7/2] (—o0, —1]U[l, o)

/N:]-
T
w
[e]
N S S,
-
N



Lecture 11

Inverse Trigonometric Functions

Since these restricted functions are now one-to-one, they have inverses, which
we denote by

1

y =sin X or y = arcsinx
y = cos 'x or y = arccos x
y = tan 'x or y = arctan x

y = cot 'x or y = arccotx

y = sec 'x or y = arcsecXx

y = csc 'x or y = arccscx

These equations are read “y equals the arcsine of x” or “y equals arcsin x”
and so on

4 0f12



Lecture 11

Inverse Trigonometric Functions

CAUTION The —1 “in the expressions for the inverse means “inverse
It does not mean reciprocal

For example, the reciprocal of sin xis (sinx)™! = 1/sinx = cscx.

50f 12



Lecture 11

Inverse Trigonometric Functions

Domain: -1 =x=1
Range: 0=y=mw
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Lecture 11

Inverse Trigonometric Functions

Domain: —oco < x < oo Domain: x=-lorx=1
Range: —E<y<z Range: OSySW,y¢E
2 2 2
y y
7777777 - — T
2 y = tan x / m| Y= see lx
I I I I x o ___ 20 __
-2 -1 1
_m f
,,,,,,, 20 | | ¥ S X
-2 -1 1 2
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Lecture 11

Inverse Trigonometric Functions

Domain: x=-lorx=1 Domain: —oco < x < o0
Range: gSySg,y#O Range: o<y<m
y y
L K
2 y=csclx T T T -
\ y = cot”lx
T
I I I I z
B 71 1 2 ) <2\
-7 | | | |
2 2 2
(© (f)
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Lecture 11

Inverse Trigonometric Functions

sin '(—x)= —sin"'x

The graph of y = cos ! x has no such symmetry

cos 'x + cos ' (—x) = 7,

cos”' (—x) = 7 — cos ' x.

sin"'x + cosT'x = 7/2.

9 of 12



Lecture 11

Inverse Trigonometric Functions

x sin”' x x cos ' x
V32 7/3 V32 /6
V2/2 /4 V2/2 /4

1/2 /6 1/2 /3
~1/2 —7/6 ~1/2 2m/3
-V2/2 —m/4 ~V2/2 3m/4
V32 —m/3 V32 57/6

X tan ' x

V3 /3

1 /4

V33 7/6

-\V3/3 —7/6

-1 —7/4

-3 —7/3 10 of 12




Lecture 11

Inverse Trigonometric Functions

smy = x y=sin'xesiny = x
d . _ o , ,
a (sm y) =1 Derivative of both sides with respect to x
dy .
Cosy - = Chain Rule
dx
dy 1 We can divide because cosy > 0
de ~ cosy for —m/2 <y < 7/2.
1 s
= 72 cosy = 1 sin” y
I —x
d, . _ 1
df(sm ') = x
* —x

110f12



Lecture 11

Derivatives of the inverse trigonometric functions

d(sin”! u) _ du/dx

e T lu| <1
d(cos™ du/dx
5. (co;x w _ duf <1
Il —u
3 d(tan™'u)  du/dx
) dx 1+ P
4 d(cot™' u) _ dujdx
' dx 1+ P
5 d(sec”'u) du/dx ..
. de Ve — 1 “
p d(csc™' u) —du/dx | > 1
. = s u
& N1
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Lecture 12

The Six Basic Hyperbolic Functions

3
Y= a2k )y = sinhx
1_

L. . et — e
Hyperbolic sine of x: sinhx = \ | 5/
J_ i [
3-2-1/K1°2 3 .
s -
//,2_y=—7
-3
(a)
Yy = cosh x
3_
. . ex + e—x -~ e 2+ B e*
Hyperbolic cosine of x:  coshx = —— YEST NV E T
2 [T N Tl Il B | X
-3-2-1 123

10f10
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Lecture 12

The Six Basic Hyperbolic Functions

sinhx e' — e

Hyperbolic tangent: tanhx = = =
yp & coshx e+ e
. coshx e"+e™*
Hyperbolic cotangent: cothx = — = —
yp & sinh x ef —e~
y
y = coth x
2L
y=1
ﬁ y = tanh x
- 2
oL Y= -1
y = coth x

20f 10



Lecture 12

The Six Basic Hyperbolic Functions

. ) S 2
Hyperbolic secant: sechx = coshx o+ o~

. 1 2
Hyperbolic cosecant: cschx = = — —

30f 10



Properties of Hyperbolic Functions

cosh2 X — sinh2 x=1

sinh 2x =2 sinh x cosh x

cosh 2x = cosh2 x+ sinh2 X

cosh2 = cosh 2x+ 1
2
sinh2 = cosh2x—1

2
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Properties of Hyperbolic Functions

tanh2 x=1-— sech2 X

coth2 x=1+ csch2 X

50f 10



Lecture 12

Derivative of Hyperbolic Functions

d _ du
dx(smh u) = coshu It

du

d .
e (coshu) = sinhu I

du

d = con
I (tanh u) = sech”u I

d 2, AU
e (cothu) = —csch U

d _ du
I (sechu) = —sech u tanh u It

d _ du
e (cschu) = —cschu cothu I

6 of 10



Lecture 12

Derivative of Hyperbolic Functions

The derivative formulas are derived from the derivative of e":

d , . d (e —e™
—(sinhu) = — (——— Definition of sinh u
dx ( ) dx 2
e du/dx + e " du/dx
= Derivative of e
2
du
= coshu—— Definition of cosh u
dx

7 of 10



Lecture 12

Derivative of Hyperbolic Functions

This gives the first derivative formula. The calculation

d d 1

7dx (CSCh u) = 7dx sinh Definition of csch u
_ _coshu du dent Rul
= sinh2 B dx Quotient Rule

1 coshudu
sinh u sinh u dx

Rcarrungc terms.

du
= —cschu cothu —— Definitions of csch u and coth u

dx

gives the last formula. The others are obtained similarly.

8 of 10



Lecture 12

Derviative of Hyperbolic Functions

%(tanh V1 o+ tz) = sech> V1 = t2-%(\/1 + t2)

=L cech® V1 + £

1 + ¢

9 0of 10



Lecture 12

Inverse Hyperbolic Functions

d(sinh™'u) 1 du
dx V] + 2
d(cosh™ u) 1 du
= - u>1
dx V2 —19x°
d(tanh™" u) 1 du
dx T -l dx jul <1
d(coth™ u) 1 du
dx = = uza, |u| > 1
d(sech™ u) —du/dx
= , o<u<li
dx uV'1 — u?
d(csch™ u) —du/dx
= s u#0
dx lu|V1 + u?

10 of 10
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